Contenido principal del artículo

Autores

Este trabajo realizó un análisis bibliométrico de correlación entre palabras claves relacionadas al análisis de ciclo de vida (ACV) y sistemas de tratamiento de agua residual, buscando identificar la relevancia del tratamiento con microalgas. La biomasa de estos microorganismos permite la valorización del efluente residual ya que puede ser empleada en la obtención de energía a través del biogás generado en la digestión de reactores anaerobios y también como fuente potencial para la producción de metabolitos de alto valor industrial. La mayoría de los ACV obtenidos en la búsqueda emplean flujos de referencia como la cantidad de biomasa producida, volumen de agua tratada y equivalentes producidos por persona. Las unidades funcionales más reportadas corresponden a 1m3 de agua residual tratada y aguas residuales producidas por equivalente poblacional. La herramienta predominante para el desarrollo de los ACV correspondió al software SimaPro, aplicando la metodología de impactos ReCiPe.

1.
Pérez Roa ME, Barajas Solano AF, García Martínez JB, Barajas Ferreira C, Machuca Martínez F. Análisis bibliométrico del ciclo de vida aplicado a procesos de tratamientos de agua residual con microalgas. inycomp [Internet]. 8 de septiembre de 2023 [citado 27 de abril de 2024];25(Suplemento):e-30112436. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12436

Mogens Henze, Yves Comeau. Wastewater Characterization. In: Biological Wastewater Treatment. 2008. p. 33, 34.

IPCC. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, [Internet]. Vol. 2, Ipcc - Sr15. 2018. Available from: www.environmentalgraphiti.org

Haddeland I, Heinke J, Biemans H, Eisner S, Flörke M, Hanasaki N, et al. Global water resources affected by human interventions and climate change. Proc Natl Acad Sci [Internet]. 2014 Mar 4;111(9):3251 LP – 3256. Available from: http://www.pnas.org/content/111/9/3251.abstract DOI: https://doi.org/10.1073/pnas.1222475110

Zhao C, Zhou J, Yan Y, Yang L, Xing G, Li H, et al. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci Total Environ [Internet]. 2021;765. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093947771&doi=10.1016%2Fj.scitotenv.2020.142795&partnerID=40&md5=0c58c28ad429a7b7dc801ddea5a54600

de Oliveira Cardoso Nascimento C, Veit MT, Palácio SM, da Cunha Gonçalves G. Use of Natural Coagulants in the Removal of Color and Turbidity from Laundry Wastewater. Water Air Soil Pollut [Internet]. 2021;232(7). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109641518&doi=10.1007%2Fs11270-021-05253-6&partnerID=40&md5=6331ce5153b2cef98ea4bf534a8fa8c8

López-Maldonado EA, Oropeza-Guzmán MT. Nejayote biopolyelectrolytes multifunctionality (glucurono ferulauted arabinoxylans) in the separation of hazardous metal ions from industrial wastewater. Chem Eng J [Internet]. 2021;423. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106252888&doi=10.1016%2Fj.cej.2021.130210&partnerID=40&md5=5538d0963fcddab3218b4599545dddd6

Ida S, Eva T. Removal of heavy metals during primary treatment of municipal wastewater and possibilities of enhanced removal: A review. Water (Switzerland) [Internet]. 2021;13(8). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105077476&doi=10.3390%2Fw13081121&partnerID=40&md5=1124498ed69b444fdc20179bb044c2f7

Guo J, Fan X, Wang J, Yu S, Laipan M, Ren X, et al. Highly efficient and selective recovery of Au(III) from aqueous solution by bisthiourea immobilized UiO-66-NH2: Performance and mechanisms. Chem Eng J [Internet]. 2021;425. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107435124&doi=10.1016%2Fj.cej.2021.130588&partnerID=40&md5=1c687acc650cbc23892aeb1a714cd0d8

Zhang X, Liu Y. Concurrent removal of Cu(II), Co(II) and Ni(II) from wastewater by nanostructured layered sodium vanadosilicate: Competitive adsorption kinetics and mechanisms. J Environ Chem Eng [Internet]. 2021;9(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109439793&doi=10.1016%2Fj.jece.2021.105945&partnerID=40&md5=927b3622126e903e892775d5c982e757

Mondal S, Das S, Gautam UK. Defect-rich, negatively-charged SnS2 nanosheets for efficient photocatalytic Cr(VI) reduction and organic dye adsorption in water. J Colloid Interface Sci [Internet]. 2021;603:110–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111067213&doi=10.1016%2Fj.jcis.2021.06.092&partnerID=40&md5=33e0a4981fc3e57313f81cfb8d77bcc6

Nakhate PH, Moradiya KK, Patil HG, Marathe K V, Yadav GD. Case study on sustainability of textile wastewater treatment plant based on lifecycle assessment approach. J Clean Prod [Internet]. 2020;245. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075355259&doi=10.1016%2Fj.jclepro.2019.118929&partnerID=40&md5=5b22f4c6958011c6aad705de2d9a5923

Li P, Miao R, Wang P, Sun F, Li X-Y. Bi-metal oxide-modified flat-sheet ceramic membranes for catalytic ozonation of organic pollutants in wastewater treatment. Chem Eng J [Internet]. 2021;426. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110408580&doi=10.1016%2Fj.cej.2021.131263&partnerID=40&md5=2a7dbde5d87121d444ba70e73de4210f

Chen M, Li X, Zhang Q, Wang C, Hu H, Wang Q, et al. Phosphate removal from aqueous solution by electrochemical coupling siderite packed column. Chemosphere [Internet]. 2021;280. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105743476&doi=10.1016%2Fj.chemosphere.2021.130805&partnerID=40&md5=7f777e0e25674003522e7f5ea796e206

Choudhary V, Vellingiri K, Thayyil MI, Philip L. Removal of antibiotics from aqueous solutions by electrocatalytic degradation. Environ Sci Nano [Internet]. 2021;8(5):1133–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106560509&doi=10.1039%2Fd0en01276a&partnerID=40&md5=166fdab1f36bd45e4bb68ec13b40e2e8

Sandoval MA, Salazar R. Electrochemical treatment of slaughterhouse and dairy wastewater: Toward making a sustainable process. Curr Opin Electrochem [Internet]. 2021;26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098111017&doi=10.1016%2Fj.coelec.2020.100662&partnerID=40&md5=4c0328ebe7d86b8f456d7bb43b32fc16

Grady CPL, Daigger GT, Love NG, Filipe CDM. Classification of Biochemical Operations. In: Biological Wastewater Treatment [Internet]. CRC Press; 2011. p. 3,4. Available from: https://books.google.com.co/books?id=stjLBQAAQBAJ

Kumar M, Kuroda K, Joshi M, Bhattacharya P, Barcelo D. First comparison of conventional activated sludge versus root-zone treatment for SARS-CoV-2 RNA removal from wastewaters: Statistical and temporal significance. Chem Eng J [Internet]. 2021;425. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107778189&doi=10.1016%2Fj.cej.2021.130635&partnerID=40&md5=2124a2ad88b73f1cbed0b7e80e5b90e9

Xu X, Liu G-H, Li Q, Wang H, Sun X, Shao Y, et al. Optimization nutrient removal at different volume ratio of anoxic-to-aerobic zone in integrated fixed-film activated sludge (IFAS) system. Sci Total Environ [Internet]. 2021;795. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109212828&doi=10.1016%2Fj.scitotenv.2021.148824&partnerID=40&md5=299cbe2b6160bd9eacabd9e7b7221e15

He Z-W, Jin H-Y, Ren Y-X, Yang W-J, Tang C-C, Yang C-X, et al. Stepwise alkaline treatment coupled with ammonia stripping to enhance short-chain fatty acids production from waste activated sludge. Bioresour Technol [Internet]. 2021;341. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113408488&doi=10.1016%2Fj.biortech.2021.125824&partnerID=40&md5=9aac46c370bb0570f779135a5f6163cb

Mohammad Mirsoleimani Azizi S, Dastyar W, Meshref MNA, Maal-Bared R, Ranjan Dhar B. Low-temperature thermal hydrolysis for anaerobic digestion facility in wastewater treatment plant with primary sludge fermentation. Chem Eng J [Internet]. 2021;426. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107944946&doi=10.1016%2Fj.cej.2021.130485&partnerID=40&md5=b052a0b6fc34beef46a37ce27bbc51cf

Musa MA, Idrus S. Physical and biological treatment technologies of slaughterhouse wastewater: A review. Sustain [Internet]. 2021;13(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105375312&doi=10.3390%2Fsu13094656&partnerID=40&md5=4a84d5bd781d2efdb46aef3560d09369

Omidinia-Anarkoli T, Shayannejad M. Improving the quality of stabilization pond effluents using hybrid constructed wetlands. Sci Total Environ [Internet]. 2021;801. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113309473&doi=10.1016%2Fj.scitotenv.2021.149615&partnerID=40&md5=7b2392a47470205a0023c7427c4534d0

Liu T, Wang Y, Zeng Y, Li J, Yu Q, Wang X, et al. Effects from fe, p, ca, mg, zn and cu in steel slag on growth and metabolite accumulation of microalgae: A review. Appl Sci [Internet]. 2021;11(14). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111319589&doi=10.3390%2Fapp11146589&partnerID=40&md5=e8172cf2ca1601d6f7c97f393a30ab5e

Kholssi R, Ramos P V, Marks EAN, Montero O, Rad C. Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. Biocatal Agric Biotechnol [Internet]. 2021;36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112746646&doi=10.1016%2Fj.bcab.2021.102114&partnerID=40&md5=2d6f1095a573258db53a95aba136b280

Su Y, Jacobsen C. Treatment of clean in place (CIP) wastewater using microalgae: Nutrient upcycling and value-added byproducts production. Sci Total Environ [Internet]. 2021;785. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105698125&doi=10.1016%2Fj.scitotenv.2021.147337&partnerID=40&md5=48729304cb3ef7865dd5e3fdbc7c522d

Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, et al. Analysis of Economic and Environmental Aspects of Microalgae Biorefinery for Biofuels Production: A Review. Biotechnol J [Internet]. 2018;13(6). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041506595&doi=10.1002%2Fbiot.201700618&partnerID=40&md5=74aec2dc32ad1ad7f031ed2476597678

Siahbalaei R, Kavoosi G, Noroozi M. Protein nutritional quality, amino acid profile, anti-amylase and anti-glucosidase properties of microalgae: Inhibition and mechanisms of action through in vitro and in silico studies. LWT [Internet]. 2021;150. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109198023&doi=10.1016%2Fj.lwt.2021.112023&partnerID=40&md5=750dfac6d9612ca6da434f3a4ed1d88e

Saadaoui I, Rasheed R, Aguilar A, Cherif M, Al Jabri H, Sayadi S, et al. Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. J Anim Sci Biotechnol [Internet]. 2021;12(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85108162061&doi=10.1186%2Fs40104-021-00593-z&partnerID=40&md5=433b1f16612bbc1581ece862be2e3052

Tseng: C-C, Yeh H-Y, Liao Z-H, Hung S-W, Chen B, Lee P-T, et al. An in vitro study shows the potential of Nostoc commune (Cyanobacteria) polysaccharides extract for wound-healing and anti-allergic use in the cosmetics industry. J Funct Foods [Internet]. 2021;87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114956383&doi=10.1016%2Fj.jff.2021.104754&partnerID=40&md5=a85471d568f949527aeecaa6936cda84

Tejada Carbajal EM, Martínez Hernández E, Fernández Linares L, Novelo Maldonado E, Limas Ballesteros R. Techno-economic analysis of Scenedesmus dimorphus microalgae biorefinery scenarios for biodiesel production and glycerol valorization. Bioresour Technol Reports [Internet]. 2020;12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096646972&doi=10.1016%2Fj.biteb.2020.100605&partnerID=40&md5=268f7f951bd077f31b6ded18527872a6

Arun J, Gopinath KP, SundarRajan P, Felix V, JoselynMonica M, Malolan R. A conceptual review on microalgae biorefinery through thermochemical and biological pathways: Bio-circular approach on carbon capture and wastewater treatment. Bioresour Technol Reports [Internet]. 2020;11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086655241&doi=10.1016%2Fj.biteb.2020.100477&partnerID=40&md5=d9a85db9398aa63e8da94c0b06bec6de

Muralikrishna I V, Manickam V. Chapter Five - Life Cycle Assessment. In: Muralikrishna I V, Manickam VBT-EM, editors. Butterworth-Heinemann; 2017. p. 57–75. Available from: https://www.sciencedirect.com/science/article/pii/B9780128119891000051 DOI: https://doi.org/10.1016/B978-0-12-811989-1.00005-1

Normalització OI per a la, Normalisatie-Instituut N. International Standard ISO 14040: Environmental Management - Life Cycle Assessment- Principles and Framework (ISO 14040:2006, IDT). [Internet]. Nederlands Normalisatie-Instituut; 2006. Available from: https://books.google.com.co/books?id=C_xSygEACAAJ

Natalia A, Adriana J-E, Howard R-M. Bibliometric analysis of bacterial resistance on periodontal disease. J Appl Pharm Sci [Internet]. 2021 Apr 5; Available from: https://www.japsonline.com/abstract.php?article_id=3357&sts=2 DOI: https://doi.org/10.7324/JAPS.2021.110414-1

Gómez-Ríos D, Ramirez-Malule H. Bibliometric analysis of recent research on multidrug and antibiotics resistance (2017–2018). J Appl Pharm Sci [Internet]. 2019 May;9(5):112–6. Available from: https://www.japsonline.com/abstract.php?article_id=2917&sts=2 DOI: https://doi.org/10.7324/JAPS.2019.90515

Centre of Science and Technology. VOSviewer : visualizing scientific landscapes [Internet]. VOSviewer. 2019. Available from: https://www.vosviewer.com/

Watson J, Wang T, Si B, Chen W-T, Aierzhati A, Zhang Y. Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. Prog Energy Combust Sci [Internet]. 2020;77. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076501340&doi=10.1016%2Fj.pecs.2019.100819&partnerID=40&md5=c93bc0e6ab772c25b20c4e8aeb29a751

Medina-Martos E, Istrate I-R, Villamil JA, Gálvez-Martos J-L, Dufour J, Mohedano ÁF. Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. J Clean Prod [Internet]. 2020;277. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089189249&doi=10.1016%2Fj.jclepro.2020.122930&partnerID=40&md5=a62ca48a6d06671344f13263b12c1ed6

Diaz-Elsayed N, Rezaei N, Ndiaye A, Zhang Q. Trends in the environmental and economic sustainability of wastewater-based resource recovery: A review. J Clean Prod [Internet]. 2020;265. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084082816&doi=10.1016%2Fj.jclepro.2020.121598&partnerID=40&md5=d211a899fa5aaf8faf30e05af0a93e26

Pesqueira JFJR, Pereira MFR, Silva AMT. Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review. J Clean Prod [Internet]. 2020;261. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082389742&doi=10.1016%2Fj.jclepro.2020.121078&partnerID=40&md5=0656690a823e7871d88a201a4f05b04e

Baaqel H, Díaz I, Tulus V, Chachuat B, Guillén-Gosálbez G, Hallett JP. Role of life-cycle externalities in the valuation of protic ionic liquids-a case study in biomass pretreatment solvents. Green Chem [Internet]. 2020;22(10):3132–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086032391&doi=10.1039%2Fd0gc00058b&partnerID=40&md5=365f27986d9e7779a5110b65ada6ce68

Lee M, Lin Y-L, Chiueh P-T, Den W. Environmental and energy assessment of biomass residues to biochar as fuel: A brief review with recommendations for future bioenergy systems. J Clean Prod [Internet]. 2020;251. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076572660&doi=10.1016%2Fj.jclepro.2019.119714&partnerID=40&md5=51f96791f53f456be28fe3a6d82c0ac6

Halleux H, Lassaux S, Germain A. Comparison of life cycle assessment methods, application to a wastewater treatment plant. In: Proceedings of the 13th CIRP International Conference on Life Cycle Engineering, LCE 2006 [Internet]. Université de Liège, Laboratory of Industrial Chemistry, Belgium; 2006. p. 93–6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031951479&partnerID=40&md5=628df859c8527dc632c42ebfdef26d70

Tangsubkul N, Beavis P, Moore SJ, Lundie S, Waite TD. Life cycle assessment of water recycling technology. Water Resour Manag [Internet]. 2005;19(5):521–37. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-27744555398&doi=10.1007%2Fs11269-005-5602-0&partnerID=40&md5=904bb6c14250ceeac875a04c756ee0de

Machado AP, Urbano L, Brito AG, Janknecht P, Salas JJ, Nogueira R. Life cycle assessment of wastewater treatment options for small and decentralized communities [Internet]. Vol. 56, Water Science and Technology. University of Minho, Institute of Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, 4710-057 Braga, Portugal; 2007. p. 15–22. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34548261343&doi=10.2166%2Fwst.2007.497&partnerID=40&md5=707d1f575a13bf1640ba0571fcb35f8e

Ortiz M, Raluy RG, Serra L. Life cycle assessment of water treatment technologies: wastewater and water-reuse in a small town. Desalination [Internet]. 2007;204(1-3 SPEC. ISS.):121–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846604654&doi=10.1016%2Fj.desal.2006.04.026&partnerID=40&md5=de749777bd272c84733ff1af4f70bb2c

Salgot M. Water reclamation, recycling and reuse: implementation issues. Desalination [Internet]. 2008;218(1–3):190–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-36549019538&doi=10.1016%2Fj.desal.2006.09.035&partnerID=40&md5=326d702440cb18e130a94ff4a6668841

Giri A, Khandayataray P, Murthy MK, Samal D. Biochemical and molecular identification of lipolytic bacteria isolated from beverage industrial wastewater and optimization of lipase-secreting bacteria. Biomass Convers Biorefinery [Internet]. 2021; Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114164456&doi=10.1007%2Fs13399-021-01890-3&partnerID=40&md5=1cf4417486f41920a0359f76a86305be

Ferreira ACD, Oliveira S, Benassi RF. Comparison of alternative wastewater treatment plants using life cycle assessment (lca) [Internet]. Vol. 198 SIST, Smart Innovation, Systems and Technologies. Universidade Federal do ABC, Santo André, SP 09210-580, Brazil; 2021. p. 437–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089716572&doi=10.1007%2F978-3-030-55374-6_43&partnerID=40&md5=9b0adcfee0259437725cbcbb0e2b6e7d

Sarkar O, Katakojwala R, Venkata Mohan S. Low carbon hydrogen production from a waste-based biorefinery system and environmental sustainability assessment. Green Chem [Internet]. 2021;23(1):561–74. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097101652&doi=10.1039%2Fd0gc03063e&partnerID=40&md5=c8fa5758a656222e11602f9782251ea4

Calicioglu O, Femeena P V, Mutel CL, Sills DL, Richard TL, Brennan RA. Techno-economic Analysis and Life Cycle Assessment of an Integrated Wastewater-Derived Duckweed Biorefinery. ACS Sustain Chem Eng [Internet]. 2021;9(28):9395–408. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85111216920&doi=10.1021%2Facssuschemeng.1c02539&partnerID=40&md5=dc25e2ab3d1e7a721a7dacd34ee42462

Satayavibul A, Ratanatamskul C. Life Cycle Assessment of a Novel Zero Organic-Waste Model Using the Integrated Anaerobic Digester and Oxidation-Ditch Membrane Bioreactor for High-rise Building Application. Waste and Biomass Valorization [Internet]. 2021;12(10):5425–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102581218&doi=10.1007%2Fs12649-021-01418-w&partnerID=40&md5=0004ea245aba9d3bd25124fbcdd9bed0

Kumar A. Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production. Chem Africa [Internet]. 2021;4(2):249–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85112477046&doi=10.1007%2Fs42250-020-00221-9&partnerID=40&md5=8d7289ee4cc5d4982c720a2b3da8537e

Miller-Robbie L, Ulrich BA, Ramey DF, Spencer KS, Herzog SP, Cath TY, et al. Life cycle energy and greenhouse gas assessment of the co-production of biosolids and biochar for land application. J Clean Prod [Internet]. 2015;91:118–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84923116294&doi=10.1016%2Fj.jclepro.2014.12.050&partnerID=40&md5=496992db7ab542498ffef02b59bec659

Puettmann M, Sahoo K, Wilson K, Oneil E. Life cycle assessment of biochar produced from forest residues using portable systems. J Clean Prod [Internet]. 2020;250. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076498030&doi=10.1016%2Fj.jclepro.2019.119564&partnerID=40&md5=7b9a1e851927ac101adf079ad8aec486

Roostaei J, Zhang Y. Spatially Explicit Life Cycle Assessment: Opportunities and challenges of wastewater-based algal biofuels in the United States. Algal Res [Internet]. 2017;24:395–402. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994078658&doi=10.1016%2Fj.algal.2016.08.008&partnerID=40&md5=3fe53a22a71a1fff65d2997a76d06567

Iribarren D, Peters JF, Dufour J. Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel [Internet]. 2012;97:812–21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84861198137&doi=10.1016%2Fj.fuel.2012.02.053&partnerID=40&md5=15ae33d4595d4751b0056fcf59d4eeec

Huang X, Bai S, Liu Z, Hasunuma T, Kondo A, Ho S-H. Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: Direct high-density ethanol production with competitive life cycle impacts. Green Chem [Internet]. 2020;22(1):153–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077548080&doi=10.1039%2Fc9gc02634g&partnerID=40&md5=14b0005cd23d6f8052a2ff2f0b8b70e8

Meneses-Jácome A, Diaz-Chavez R, Velásquez-Arredondo HI, Cárdenas-Chávez DL, Parra R, Ruiz-Colorado AA. Sustainable Energy from agro-industrial wastewaters in Latin-America. Renew Sustain Energy Rev [Internet]. 2016;56:1249–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84952361496&doi=10.1016%2Fj.rser.2015.12.036&partnerID=40&md5=8faaa7e1b466c0f1a089f4a4733ebb6b

Padrón Páez JI, Carvalho A, Prado-Rubio OA, Román-Martínez A. Assessment of sustainable wastewater treatment networks design applying LCA [Internet]. Vol. 40, Computer Aided Chemical Engineering. Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Av. Dr. Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, S.L.P. 78210, Mexico; 2017. p. 2707–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041569854&doi=10.1016%2FB978-0-444-63965-3.50453-0&partnerID=40&md5=2b97c754fdd3290acb735697f5756d9f

Meneses-Jácome A, Ruiz-Colorado A. Eco-lca of biological wastewater treatments focused on energy recovery [Internet]. Advances in Science, Technology and Innovation. Grupo de Investigación en Bioprocesos y Flujos Reactivos, Universidad Nacional de Colombia—Sede Medellín, Carrera 80 No. 65-223, Núcleo Robledo, Medellín, Colombia; 2020. p. 349–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098003065&doi=10.1007%2F978-3-030-13068-8_87&partnerID=40&md5=16496b67858b2e79ff908eec0bedbc21

Singh SP, Pandey A, Sharma R, Sharma MK. Life cycle assessment on membrane bio-reactor and activated sludge systems. Indian J Environ Prot [Internet]. 2019;39(11):989–94. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076767139&partnerID=40&md5=edc0038c07c70b299793ccba6b998800

Papa M, Alfonsín C, Moreira MT, Bertanza G. Ranking wastewater treatment trains based on their impacts and benefits on human health: A “biological Assay and Disease” approach. J Clean Prod [Internet]. 2016;113:311–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961680146&doi=10.1016%2Fj.jclepro.2015.11.021&partnerID=40&md5=59806be3cb3b6f6a9c5f03ca5f5a6ca8

Tatiana F, Paula P, Vivian B, Rigoberto P, Jannet O, Paola A. Life cycle assessment to identify environmental improvements in an aerobic waste water treatment plant. Chem Eng Trans [Internet]. 2016;49:493–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969514485&doi=10.3303%2FCET1649083&partnerID=40&md5=f80abbc3fb127e52bab8e2a94e5dc7d8

Lopsik K. Life cycle assessment of small-scale constructed wetland and extended aeration activated sludge wastewater treatment system. Int J Environ Sci Technol [Internet]. 2013;10(6):1295–308. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887450719&doi=10.1007%2Fs13762-012-0159-y&partnerID=40&md5=2ec390c19a6b4d6621de555f5b13ffe5

Banti DC, Tsangas M, Samaras P, Zorpas A. LCA of a membrane bioreactor compared to activated sludge system for municipal wastewater treatment. Membranes (Basel) [Internet]. 2020;10(12):1–15. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097827575&doi=10.3390%2Fmembranes10120421&partnerID=40&md5=86728dd7521bf41c7a4a58091b5d16cc

Yildirim M, Topkaya B. Assessing environmental impacts of wastewater treatment alternatives for small-scale communities. Clean - Soil, Air, Water [Internet]. 2012;40(2):171–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84856350593&doi=10.1002%2Fclen.201000423&partnerID=40&md5=5cad9064d31de7e0d144444a0ebe92a9

Garfí M, Flores L, Ferrer I. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. J Clean Prod [Internet]. 2017;161:211–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025455071&doi=10.1016%2Fj.jclepro.2017.05.116&partnerID=40&md5=7d0e56bf3a566cc5545d24c1376ea855

De Feo G, Ferrara C. A procedure for evaluating the most environmentally sound alternative between two on-site small-scale wastewater treatment systems. J Clean Prod [Internet]. 2017;164:124–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027530210&doi=10.1016%2Fj.jclepro.2017.06.205&partnerID=40&md5=a3f622ac76b8e96d9ee9c50fafa66c5e

Arias A, Feijoo G, Moreira MT. Environmental profile of decentralized wastewater treatment strategies based on membrane technologies. In: Current Developments in Biotechnology and Bioengineering: Advanced Membrane Separation Processes for Sustainable Water and Wastewater Management - Case Studies and Sustainability Analysis [Internet]. Department of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, Spain; 2020. p. 259–87. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092656625&doi=10.1016%2FB978-0-12-819854-4.00011-3&partnerID=40&md5=533c1f92ca119171a6fd623114697f7c

Lanko I, Flores L, Garfí M, Todt V, Posada JA, Jenicek P, et al. Life cycle assessment of the mesophilic, thermophilic, and temperature-phased anaerobic digestion of sewage sludge. Water (Switzerland) [Internet]. 2020;12(11):1–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096358873&doi=10.3390%2Fw12113140&partnerID=40&md5=fd15a16e6315ee92709667785cb07a9b

Arias A, Feijoo G, Moreira MT. Linking organic matter removal and biogas yield in the environmental profile of innovative wastewater treatment technologies. J Clean Prod [Internet]. 2020;276. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091646331&doi=10.1016%2Fj.jclepro.2020.124292&partnerID=40&md5=21f7d5a10fbb7bde4e59225ed17d888c

Bagley DM. Life cycle analysis of municipal wastewater treatment. In: 2000 Annual Conference Abstracts - Canadian Society for Civil Engineering [Internet]. Department of Civil Engineering, University of Toronto, Canada; 2000. p. 93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-21844431886&partnerID=40&md5=2c4905f33bea02d770609da3f4ff2826

Pretel R, Robles A, Ruano M V, Seco A, Ferrer J. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. J Environ Manage [Internet]. 2016;166:45–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84944080739&doi=10.1016%2Fj.jenvman.2015.10.004&partnerID=40&md5=de44fa2de04fc00eb100242d1634e459

Magalhães IB, Ferreira J, de Siqueira Castro J, Assis LR de, Calijuri ML. Technologies for improving microalgae biomass production coupled to effluent treatment: A life cycle approach. Algal Res [Internet]. 2021 Jul;57:102346. Available from: https://linkinghub.elsevier.com/retrieve/pii/S221192642100165X DOI: https://doi.org/10.1016/j.algal.2021.102346

De Benedetti B, Barbera AC, Freni P, Tecchio P. Wastewater valorization adopting the microalgae accelerated growth. Desalin Water Treat [Internet]. 2015;53(4):1001–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922479081&doi=10.1080%2F19443994.2013.848412&partnerID=40&md5=4694820e3a6ee9aee353866ae90fe7e8

Bussa M, Zollfrank C, Röder H. Life-cycle assessment and geospatial analysis of integrating microalgae cultivation into a regional economy. J Clean Prod [Internet]. 2020 Jan;243:118630. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072762674&doi=10.1016%2Fj.jclepro.2019.118630&partnerID=40&md5=e454d77404b7a56dd8db6dc2a239edea

Li P, Yuan X, Luo Y. Life Cycle Assessment for Carbon Balance of a Wastewater Treatment Integrated Microalgae Biofuel Production Process. In: Computer Aided Chemical Engineering [Internet]. 2020. p. 1699–704. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092798590&doi=10.1016%2FB978-0-12-823377-1.50284-6&partnerID=40&md5=c52d7aec4419032e763d116a17ca9cd0

Raghuvanshi S, Bhakar V, Chava R, Sangwan KS. Comparative Study Using Life Cycle Approach for the Biodiesel Production from Microalgae Grown in Wastewater and Fresh Water. In: Procedia CIRP [Internet]. Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Pilani Campus333031, India; 2018. p. 568–72. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047055622&doi=10.1016%2Fj.procir.2017.11.030&partnerID=40&md5=8d860b5cbdb80bab8a0181a9b2fc0834

Maga D. Life cycle assessment of biomethane produced from microalgae grown in municipal waste water. Biomass Convers Biorefinery [Internet]. 2017 Mar 13;7(1):1–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013074796&doi=10.1007%2Fs13399-016-0208-8&partnerID=40&md5=9a8041359773f5c8fa0a6e01608563a5