Contenido principal del artículo

Autores

Los lixiviados de rellenos sanitarios son residuos líquidos complejos, considerados un problema significativo para el medio ambiente. Las microalgas se presentan como una alternativa para el tratamiento y aprovechamiento de aguas residuales por su capacidad adaptativa, siendo una opción viable para su uso en lixiviados. Esta contribución presenta una descripción bibliométrica de las investigaciones indexadas en la base de datos SCOPUS relacionadas con microalgas y lixiviados de rellenos sanitarios. En base a esto, se identificó la relevancia del tratamiento con microalgas tanto en aguas residuales en general como en lixiviados con el fin de conocer la proporción de avance entre los dos. Se encontraron 68 artículos relacionados a microalgas y lixiviados, siendo China es el país más productivo en cuanto a número de publicaciones. Este estudio demostró que el uso de microalgas en lixiviados en un tema que aún esta en desarrollo y su enfoque está dado para el tratamiento de este residuo, siendo limitados los estudios de aprovechamiento y obtención de bioproductos.  

Maria Daniela Ortiz Alvarez, Universidad Industrial de Santander. Bucaramanga, Colombia

https://orcid.org/0000-0002-2321-7363

Crisóstomo Barajas Ferreira, Universidad Industrial de Santander. Bucaramanga, Colombia

https://orcid.org/0000-0001-9505-9328

Janet Bibiana García Martínez, Universidad Francisco de Paula Santander. Cúcuta, Colombia

https://orcid.org/0000-0001-6719-7408

Andrés Fernando Barajas Solano, Universidad Francisco de Paula Santander. Cúcuta, Colombia

https://orcid.org/0000-0003-2765-9131

Fiderman Machuca Martínez, Universidad del Valle, Cali, Colombia

https://orcid.org/0000-0002-4553-3957

1.
Ortiz Alvarez MD, Barajas Ferreira C, García Martínez JB, Barajas Solano AF, Machuca Martínez F. Análisis bibliométrico de cultivos de microalgas en lixiviados de relleno sanitario. inycomp [Internet]. 5 de mayo de 2023 [citado 28 de marzo de 2024];25(2):e-30212444. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12444

Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N. Effect of Light Intensity and Quality on Growth Rate and Composition of Chlorella vulgaris. Plants (Basel, Switzerland) [Internet]. 2019 Dec 24;9(1):31. Available from: https://pubmed.ncbi.nlm.nih.gov/31878279

Zavřel T, Schoffman H, Lukeš M, Fedorko J, Keren N, Červený J. Monitoring fitness and productivity in cyanobacteria batch cultures. Algal Res [Internet]. 2021;56:102328. Available from: https://www.sciencedirect.com/science/article/pii/S2211926421001478

Mathimani T, Baldinelli A, Rajendran K, Prabakar D, Matheswaran M, Pieter van Leeuwen R, et al. Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps. J Clean Prod. 2019 Jan;208:1053–64.

Nur MMA, Buma AGJ. Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds. Waste and Biomass Valorization. 2019;10(8):2079–97.

Úbeda B, Gálvez JÁ, Michel M, Bartual A. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. Bioresour Technol. 2017 Mar;228:210–7.

Chia SR, Ong HC, Chew KW, Show PL, Phang S-M, Ling TC, et al. Sustainable approaches for algae utilisation in bioenergy production. Renew Energy [Internet]. 2018;129:838–52. Available from: https://www.sciencedirect.com/science/article/pii/S0960148117302938

Wan C, Alam MA, Zhao X-Q, Zhang X-Y, Guo S-L, Ho S-H, et al. Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour Technol [Internet]. 2015;184:251–7. Available from: https://www.sciencedirect.com/science/article/pii/S0960852414016939

Hu J, Nagarajan D, Zhang Q, Chang J-S, Lee D-J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol Adv. 2018;36(1):54–67.

Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. Sci Total Environ [Internet]. 2022;802:149765. Available from: https://www.sciencedirect.com/science/article/pii/S0048969721048403

García G, Sosa-Hernández JE, Rodas-Zuluaga LI, Castillo-Zacarías C, Iqbal H, Parra-Saldívar R. Accumulation of PHA in the Microalgae Scenedesmus sp. under Nutrient-Deficient Conditions. Polymers (Basel). 2021;13(1).

Rueda E, García J. Optimization of the phototrophic Cyanobacteria polyhydroxybutyrate (PHB) production by kinetic model simulation. Sci Total Environ [Internet]. 2021;800:149561. Available from: https://www.sciencedirect.com/science/article/pii/S0048969721046362

Liao Q, Chang H-X, Fu Q, Huang Y, Xia A, Zhu X, et al. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients. Bioresour Technol. 2018;250:583–90.

Hernández-García A, Velásquez-Orta SB, Novelo E, Yáñez-Noguez I, Monje-Ramírez I, Orta Ledesma MT. Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production. Ecotoxicol Environ Saf. 2019 Jun;174:435–44.

Zapata D, Arroyave C, Cardona L, Aristizábal A, Poschenrieder C, Llugany M. Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters. Algal Res [Internet]. 2021;59:102469. Available from: https://www.sciencedirect.com/science/article/pii/S2211926421002885

Chang H, Quan X, Zhong N, Zhang Z, Lu C, Li G, et al. High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production. Bioresour Technol. 2018 Oct;266:374–81.

Dogaris I, Loya B, Cox J, Philippidis G. Study of landfill leachate as a sustainable source of water and nutrients for algal biofuels and bioproducts using the microalga Picochlorum oculatum in a novel scalable bioreactor. Bioresour Technol. 2019 Jun;282:18–27.

Nair AT, Senthilnathan J, Nagendra SMS. Application of the phycoremediation process for tertiary treatment of landfill leachate and carbon dioxide mitigation. J Water Process Eng [Internet]. 2019;28:322–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065594891&doi=10.1016%2Fj.jwpe.2019.02.017&partnerID=40&md5=dec4046feedef122e36525ad9e95ebef

Fan Z, Qin L, Zheng W, Meng Q, Shen C, Zhang G. Oscillating membrane photoreactor combined with salt-tolerated Chlorella pyrenoidosa for landfill leachates treatment. Bioresour Technol. 2018;269:134–42.

Luo H, Zeng Y, Cheng Y, He D, Pan X. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ [Internet]. 2020;703:135468. Available from: https://www.sciencedirect.com/science/article/pii/S0048969719354610

Gonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Algal Res. 2017;24:403–15.

Khanzada ZT, Övez S. Microalgae as a sustainable biological system for improving leachate quality. Energy. 2017 Dec;140:757–65.

Kumari M, Ghosh P, Thakur IS. Landfill leachate treatment using bacto-algal co-culture: An integrated approach using chemical analyses and toxicological assessment. Ecotoxicol Environ Saf [Internet]. 2016;128:44–51. Available from: https://www.sciencedirect.com/science/article/pii/S0147651316300409

Edmundson SJ, Wilkie AC. Landfill leachate – a water and nutrient resource for algae-based biofuels. Environ Technol [Internet]. 2013 Jul 1;34(13–14):1849–57. Available from: https://doi.org/10.1080/09593330.2013.826256

Hu D, Zhang J, Chu R, Yin Z, Hu J, Kristianto Nugroho Y, et al. Microalgae Chlorella vulgaris and Scenedesmus dimorphus co-cultivation with landfill leachate for pollutant removal and lipid production. Bioresour Technol [Internet]. 2021;342:126003. Available from: https://www.sciencedirect.com/science/article/pii/S0960852421013456

Nawaz T, Rahman A, Pan S, Dixon K, Petri B, Selvaratnam T. A Review of Landfill Leachate Treatment by Microalgae: Current Status and Future Directions. Processes. 2020;8(4).

van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics [Internet]. 2010;84(2):523–38. Available from: https://doi.org/10.1007/s11192-009-0146-3

Anbalagan A, Schwede S, Nehrenheim E. Influence of Light Emitting Diodes on Indigenous Microalgae Cultivation in Municipal Wastewater. Energy Procedia [Internet]. 2015;75:786–92. Available from: https://www.sciencedirect.com/science/article/pii/S1876610215008930

Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv [Internet]. 2011;29(6):686–702. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80053435484&doi=10.1016%2Fj.biotechadv.2011.05.015&partnerID=40&md5=1139997161e1a2d14ad5aed89467798f

Su Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci Total Environ [Internet]. 2021;762:144590. Available from: https://www.sciencedirect.com/science/article/pii/S0048969720381213

de Farias Silva CE, Sforza E. Carbohydrate productivity in continuous reactor under nitrogen limitation: Effect of light and residence time on nutrient uptake in Chlorella vulgaris. Process Biochem [Internet]. 2016;51(12):2112–8. Available from: https://www.sciencedirect.com/science/article/pii/S1359511316304378

Fazal T, Rehman MSU, Javed F, Akhtar M, Mushtaq A, Hafeez A, et al. Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere [Internet]. 2021;281:130758. Available from: https://www.sciencedirect.com/science/article/pii/S0045653521012297

Ferreira A, Melkonyan L, Carapinha S, Ribeiro B, Figueiredo D, Avetisova G, et al. Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environ Adv [Internet]. 2021;4:100062. Available from: https://www.sciencedirect.com/science/article/pii/S2666765721000338

Narindri Rara Winayu B, Tung Lai K, Ta Hsueh H, Chu H. Production of phycobiliprotein and carotenoid by efficient extraction from Thermosynechococcus sp. CL-1 cultivation in swine wastewater. Bioresour Technol [Internet]. 2021;319:124125. Available from: https://www.sciencedirect.com/science/article/pii/S0960852420313997

Wu J-Y, Lay C-H, Chiong M-C, Chew KW, Chen C-C, Wu S-Y, et al. Immobilized Chlorella species mixotrophic cultivation at various textile wastewater concentrations. J Water Process Eng [Internet]. 2020;38:101609. Available from: https://www.sciencedirect.com/science/article/pii/S2214714420304876

Gao F, Yang H-L, Li C, Peng Y-Y, Lu M-M, Jin W-H, et al. Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp. Bioresour Technol [Internet]. 2019;282:118–24. Available from: https://www.sciencedirect.com/science/article/pii/S0960852419303578

Znad H, Al Ketife AMD, Judd S, AlMomani F, Vuthaluru HB. Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol Eng [Internet]. 2018;110:1–7. Available from: https://www.sciencedirect.com/science/article/pii/S0925857417305669

Evans L, Hennige SJ, Willoughby N, Adeloye AJ, Skroblin M, Gutierrez T. Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris. Algal Res [Internet]. 2017;24:368–77. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416305057

Nayak M, Karemore A, Sen R. Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Res [Internet]. 2016;16:216–23. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416300996

Wang Y, Guo W, Yen H-W, Ho S-H, Lo Y-C, Cheng C-L, et al. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresour Technol [Internet]. 2015;198:619–25. Available from: https://www.sciencedirect.com/science/article/pii/S0960852415013462

Mahapatra DM, Chanakya HN, Ramachandra T V. Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol [Internet]. 2014;168:142–50. Available from: https://www.sciencedirect.com/science/article/pii/S0960852414004350

Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res [Internet]. 2013;47(13):4294–302. Available from: https://www.sciencedirect.com/science/article/pii/S0043135413004077

Shashirekha V, Sridharan MR, Swamy M. Bioremediation of Tannery Effluents Using a Consortium of Blue-Green Algal Species. Clean - Soil, Air, Water [Internet]. 2011;39(9):863–73. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052917272&doi=10.1002%2Fclen.201000548&partnerID=40&md5=a002006388ce2e14f78614fbbbad60c4

Jiang L, Luo S, Fan X, Yang Z, Guo R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy [Internet]. 2011;88(10):3336–41. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79957991062&doi=10.1016%2Fj.apenergy.2011.03.043&partnerID=40&md5=f4bb641eba4ff3089dc4d272a8337fea

Mennaa FZ, Arbib Z, Perales JA. Urban wastewater treatment by seven species of microalgae and analgal bloom: Biomass production, N and P removal kinetics andharvestability. Water Res [Internet]. 2015;83:42–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936791599&doi=10.1016%2Fj.watres.2015.06.007&partnerID=40&md5=26857843d493696311fb864ff097f9bb

Ghosh P, Thakur IS, Kaushik A. Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicol Environ Saf [Internet]. 2017;141:259–70. Available from: https://www.sciencedirect.com/science/article/pii/S0147651317301562

Pereira SFL, Gonçalves AL, Moreira FC, Silva TFCV, Vilar VJP, Pires JCM. Nitrogen removal from landfill leachate by microalgae. Int J Mol Sci [Internet]. 2016;17(11). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84996508234&doi=10.3390%2Fijms17111926&partnerID=40&md5=b5f320eaf4bf48b940b32f2959d155fc

Cheung KC, Chu LM, Wong MH. Toxic effect of landfill leachate on microalgae. Water, Air, Soil Pollut [Internet]. 1993;69(3–4):337–49. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027643246&doi=10.1007%2FBF00478169&partnerID=40&md5=f85dc1d43da09af82e692f8e8617e6d1

Lambolez L, Vasseur P, Ferard JF, Gisbert T. The environmental risks of industrial waste disposal: An experimental approach including acute and chronic toxicity studies. Ecotoxicol Environ Saf [Internet]. 1994;28(3):317–28. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0028162686&doi=10.1006%2Feesa.1994.1056&partnerID=40&md5=6baffa600f5365ae6a5959b4e6baa682

Bernard C, Guido P, Colin J, Anne LD-D. Estimation of the hazard of landfllls through toxicity testing of leachates. I. Determination of leachate toxicity with a battery of acute tests. Chemosphere [Internet]. 1996;33(11):2303–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030428447&doi=10.1016%2F0045-6535%2896%2900322-0&partnerID=40&md5=b93ea076c594eae8f7dc990f92da8073

Bernard C, Colin JR, Anne LD-D. Estimation of the hazard of landfills through toxicity testing of leachates. Comparison of physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests. Chemosphere [Internet]. 1997;35(11):2783–96. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0343907193&doi=10.1016%2FS0045-6535%2897%2900332-9&partnerID=40&md5=2a4d2a1e843d8d47dbcfad40cf88f00f

Sallenave R, Fomin A. Some advantages of the duckweed test to assess the toxicity of environmental samples. Acta Hydrochim Hydrobiol [Internet]. 1997;25(3):135–40. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0031295794&doi=10.1002%2Faheh.19970250304&partnerID=40&md5=d1ad14b144a7384cdefc99e82cf28d76

Lin L, Chan GYS, Jiang BL, Lan CY. Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment. Waste Manag [Internet]. 2007;27(10):1376–82. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547112819&doi=10.1016%2Fj.wasman.2006.09.001&partnerID=40&md5=cd23dcd8adf099ab893b016d9c283f40

Chang H, Fu Q, Zhong N, Yang X, Quan X, Li S, et al. Microalgal lipids production and nutrients recovery from landfill leachate using membrane photobioreactor. Bioresour Technol [Internet]. 2019;277:18–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059904911&doi=10.1016%2Fj.biortech.2019.01.027&partnerID=40&md5=a611ac9fec38a0a901b6d63eba6479f7

Quan X, Hu R, Chang H, Tang X, Huang X, Cheng C, et al. Enhancing microalgae growth and landfill leachate treatment through ozonization. J Clean Prod [Internet]. 2020;248. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075330537&doi=10.1016%2Fj.jclepro.2019.119182&partnerID=40&md5=701969be83d85a7a919b0d32409d6643

Paskuliakova A, Tonry S, Touzet N. Phycoremediation of landfill leachate with chlorophytes: Phosphate a limiting factor on ammonia nitrogen removal. Water Res [Internet]. 2016;99:180–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964967659&doi=10.1016%2Fj.watres.2016.04.029&partnerID=40&md5=45dfc62db1fc3ddf39036668c7701409

Paskuliakova A, McGowan T, Tonry S, Touzet N. Phycoremediation of landfill leachate with the chlorophyte Chlamydomonas sp. SW15aRL and evaluation of toxicity pre and post treatment. Ecotoxicol Environ Saf [Internet]. 2018;147:622–30. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029531875&doi=10.1016%2Fj.ecoenv.2017.09.010&partnerID=40&md5=b5de337dc6982ea0f82fe5976e79d84a

Paskuliakova A, McGowan T, Tonry S, Touzet N. Microalgal bioremediation of nitrogenous compounds in landfill leachate – The importance of micronutrient balance in the treatment of leachates of variable composition. Algal Res [Internet]. 2018;32:162–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044965300&doi=10.1016%2Fj.algal.2018.03.010&partnerID=40&md5=04a8f173ffb56e83b2d046e91766f734

Saldarriaga LF, Almenglo F, Ramírez M, Cantero D. Kinetic characterization and modeling of a microalgae consortium isolated from landfill leachate under a high CO2 concentration in a bubble column photobioreactor. Electron J Biotechnol [Internet]. 2020;44:47–57. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079897076&doi=10.1016%2Fj.ejbt.2020.01.006&partnerID=40&md5=3b3375eaddf4491247eb914523af7d06

Callejo-López JA, Ramírez M, Cantero D, Bolívar J. Versatile method to obtain protein- and/or amino acid-enriched extracts from fresh biomass of recalcitrant microalgae without mechanical pretreatment. Algal Res [Internet]. 2020;50. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088126385&doi=10.1016%2Fj.algal.2020.102010&partnerID=40&md5=eebc512db0cb3b7ebe658f83fed6b885

Saldarriaga LF, Almenglo F, Cantero D, Ramírez M. Influence of leachate and nitrifying bacteria on photosynthetic biogas upgrading in a two-stage system. Processes [Internet]. 2021;9(9). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114019766&doi=10.3390%2Fpr9091503&partnerID=40&md5=cc4153606544c0047317de39931477e4

Elmaadawy K, Hu J, Guo S, Hou H, Xu J, Wang D, et al. Enhanced treatment of landfill leachate with cathodic algal biofilm and oxygen-consuming unit in a hybrid microbial fuel cell system. Bioresour Technol [Internet]. 2020;310. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083650526&doi=10.1016%2Fj.biortech.2020.123420&partnerID=40&md5=4de5e9387e8065c4019eb6286b8ac1b7

Casazza AA, Rovatti M. Reduction of nitrogen content in landfill leachate using microalga. Desalin Water Treat [Internet]. 2018;127:71–4. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055709541&doi=10.5004%2Fdwt.2018.22537&partnerID=40&md5=dbe7e49e52f1ecd1afb8d55e7112857f

Sforza E, Khairallah Al Emara M-H, Sharif A, Bertucco A. Exploitation of urban landfill leachate as nutrient source for microalgal biomass production. S. P, J.J. K, editors. Chem Eng Trans [Internet]. 2015;43:373–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84946021648&doi=10.3303%2FCET1543063&partnerID=40&md5=21949171eb57ade78b1d1f6f0f8253f1

Cheah WY, Ling TC, Show PL, Juan JC, Chang J-S, Lee D-J. Cultivation in wastewaters for energy: A microalgae platform. Appl Energy [Internet]. 2016;179:609–25. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978863683&doi=10.1016%2Fj.apenergy.2016.07.015&partnerID=40&md5=abc2d784f5c4f6c1f998f1732fe827ce

Zhao X, Zhou Y, Huang S, Qiu D, Schideman L, Chai X, et al. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour Technol [Internet]. 2014;156:322–8. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893833503&doi=10.1016%2Fj.biortech.2013.12.112&partnerID=40&md5=5f24d45d6fd6cb4d145d1c488021ecd0

Nordin N, Yusof N, Samsudin S. Biomass Production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in Nitrified Landfill Leachate. Waste and Biomass Valorization [Internet]. 2017;8(7):2301–11. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85001555307&doi=10.1007%2Fs12649-016-9709-8&partnerID=40&md5=bce9621c5c9f0a19493455d79a01978d

Paiva ALP, Gonçalves da Fonseca Silva D, Couto E. Recycling of landfill leachate nutrients from microalgae and potential applications for biomass valorization. J Environ Chem Eng [Internet]. 2021;9(5). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85109012482&doi=10.1016%2Fj.jece.2021.105952&partnerID=40&md5=e1db533ef71620d16eb80d60f64cf1d0

Abdel-Shafy HI, Mansour MSM. Phytoremediation for the elimination of metals, pesticides, PAHs, and other pollutants from wastewater and soil. In: Phytobiont and Ecosystem Restitution [Internet]. Water Research and Polluted Control Department, National Research Centre, Cairo, Egypt: Springer Singapore; 2018. p. 101–36. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077652891&doi=10.1007%2F978-981-13-1187-1_5&partnerID=40&md5=6234114c88adbc7a925fb16d2ba9b54e

Callegari A, Bolognesi S, Cecconet D, Capodaglio AG. Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review. Crit Rev Environ Sci Technol [Internet]. 2020;50(4):384–436. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068171731&doi=10.1080%2F10643389.2019.1629801&partnerID=40&md5=c911d25160592fac32e2cb185cdb12ca

Shaari AL, Sa SNC, Surif M, Zolkarnain N, Ghazali R. Growth of marine microalgae in landfill leachate and their ability as pollutants removal. Trop Life Sci Res [Internet]. 2021;32(2):133–46. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85110511014&doi=10.21315%2Ftlsr2021.32.2.9&partnerID=40&md5=8e493d280da24a5c996c88721c873f9d

Bernard C, Guido P, Colin J, Anne LD-D. Estimation of the hazard of landfllls through toxicity testing of leachates. I. Determination of leachate toxicity with a battery of acute tests. Chemosphere [Internet]. 1996;33(11):2303–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030428447&doi=10.1016%2F0045-6535%2896%2900322-0&partnerID=40&md5=b93ea076c594eae8f7dc990f92da8073

Sardi-Saavedra A, Peña-Salamanca EJ, Madera-Parra CA, Cerón-Hernández VA. Diversity of algal communities associated with a photosynthetic high rate algal system for bioremediation landfill leachate . Lat Am J Aquat Res [Internet]. 2016;44(1):113–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84969980399&doi=10.3856%2Fvol44-issue1-fulltext-11&partnerID=40&md5=f5311a999159103615c0c4ea6d0f910b

Sardi Saavedra A, Madera Parra C, Peña Salamanca EJ, Cerón VA, Mosquera J. Grupos funcionales fitoplanctÓnicos en una laguna algal de alta tasa usada para la biorremediaciÓn de lixiviados de rellenos sanitarios . Acta Biol Colomb [Internet]. 2018;23(3):295–303. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056380435&doi=10.15446%2Fabc.v23n3.69537&partnerID=40&md5=55fa60eb9f07d0e00b3975678fae1728

Mustafa E-M, Phang S-M, Chu W-L. Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J Appl Phycol [Internet]. 2012;24(4):953–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84864118449&doi=10.1007%2Fs10811-011-9716-x&partnerID=40&md5=524d6ad6c31ddf9ccaa669a0b8ee03ea

Sniffen KD, Sales CM, Olson MS. Nitrogen removal from raw landfill leachate by an algae-bacteria consortium. Water Sci Technol [Internet]. 2016;73(3):479–85. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84959019783&doi=10.2166%2Fwst.2015.499&partnerID=40&md5=9e805d765845c08109bdab5173c461d3

El Ouaer M, Kallel A, Kasmi M, Hassen A, Trabelsi I. Tunisian landfill leachate treatment using Chlorella sp.: effective factors and microalgae strain performance. Arab J Geosci [Internet]. 2017;10(20). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032485563&doi=10.1007%2Fs12517-017-3241-4&partnerID=40&md5=779d6c9f35317bb80ed431369a9c7184

Nguyen HTH, Min B. Leachate treatment and electricity generation using an algae-cathode microbial fuel cell with continuous flow through the chambers in series. Sci Total Environ [Internet]. 2020;723:138054. Available from: https://www.sciencedirect.com/science/article/pii/S0048969720315679

García P. Manejo y tratamiento de lixiviados en rellenos sanitarios: revisión bibliográfica y experiencia en Planta de Tratamiento de Lixiviados de Navarro [Internet]. Especialización Especialista en Gerencia Ambiental y Desarrollo Sostenible Empresarial. Especialización en Gerencia Ambiental y Desarrollo Sostenible Empresarial, Universidad Santiago de Cali; 2019. Available from: https://repository.usc.edu.co/handle/20.500.12421/677

Canizales S, Castro C, Saldarriaga J, Molina F. Evaluation of mature landfill leachates Treatment systems: the case of the landfill Curva de Rodas (Medellín-Colombia) [Internet]. Revista Facultad de Ingeniería Universidad de Antioquia. Universidad de Antioquia; 2013. p. 300–16. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302013000400024&lng=en&nrm=iso&tlng=en

Donneys-Victoria D, Marriaga-Cabrales N, Camargo-Amado RJ, Machuca-Martínez F, Peralta-Hernández JM, Martínez-Huitle CA. Treatment of landfill leachate by a combined process: Iron electrodissolution, iron oxidation by H2O2 and chemical flocculation. Sustain Environ Res [Internet]. 2018;28(1):12–9. Available from: https://www.sciencedirect.com/science/article/pii/S2468203917300298

Gomez AM, Yannarell AC, Sims GK, Cadavid-Restrepo G, Moreno Herrera CX. Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biol Biochem [Internet]. 2011;43(6):1275–84. Available from: https://www.sciencedirect.com/science/article/pii/S003807171100109X

Madera-Parra CA, Peña-Salamanca EJ, Peña MR, Rousseau DPL, Lens PNL. Phytoremediation of Landfill Leachate with Colocasia esculenta, Gynerum sagittatum and Heliconia psittacorum in Constructed Wetlands. Int J Phytoremediation [Internet]. 2015 Jan 2;17(1):16–24. Available from: https://doi.org/10.1080/15226514.2013.828014

Becerra D, Soto J, Villamizar S, Machuca-Martínez F, Ramírez L. Alternative for the Treatment of Leachates Generated in a Landfill of Norte de Santander–Colombia, by Means of the Coupling of a Photocatalytic and Biological Aerobic Process. Top Catal [Internet]. 2020;63(11):1336–49. Available from: https://doi.org/10.1007/s11244-020-01284-1