Contenido principal del artículo

La ozonización catalítica (OC) es una tecnología prometedora en términos de eficiencia y costo energético como tratamiento de efluentes industriales que poseen contaminantes de preocupación emergentes, ya que mejora las capacidades oxidativas del ozono a través de catalizadores que promueven su descomposición y la generación de especies radicales oxidantes, los cuales reaccionan con prácticamente cualquier compuesto presente en los efluentes. Este artículo estudió el estado y evolución de la OC mediante una revisión de la literatura y un análisis bibliométrico combinado con la técnica de curva S para analizar cuantitativamente 1714 publicaciones en SCOPUS y SciELO Index desde el año 1973 al 2021.


Los resultados mostraron que (1) el número de publicaciones a nivel mundial se inició en 1973 a tuvo 189 documentos  en 2021; (2) China es el país con mayor número de publicaciones y citaciones anuales (958 y 19088, respectivamente) y es un país central en redes de cooperación internacional; (3) tanto el estado del arte como el análisis de co-ocurrencia de palabras clave mostró que la investigación ha priorizado mecanismos de reacción de la OC, expresiones cinéticas, catalizadores, y desde 2016, la aplicación a escala piloto en conjunto con otras tecnologías avanzadas de oxidación; (4) El compuesto  con más investigaciones es el ácido oxálico y desde 1999 ibuprofeno y atrazina; (5) en América Latina, Brasil es el país con más publicaciones (32) y con mayor número de redes de cooperación internacional y (5) Applied Catalysis B: Environmental y Journal of the Brazilean Chemical Society (América Latina) son las revistas con mejor cuartil que publican sobre OC. Finalmente, la curva S indicó que la OC se encuentra en etapa de crecimiento en términos de madurez cientifica, exhibiendo un gran potencial en I+D.

1.
Angel-Ospina AC, Machuca-Martínez F. Ozonización catalítica en el tratamiento de Contaminantes de Preocupación Emergente en aguas residuales: Un análisis bibliométrico. inycomp [Internet]. 29 de diciembre de 2021 [citado 20 de mayo de 2022];24(1). Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11603

(1) UN CEPAL. La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe. Objetivos, metas e indicadores mundiales [Internet]. Comisión Económica para América Latina y El Caribe. 2019. Available from: https://www.cepal.org/es/publicaciones/40155-la-agenda-2030-objetivos-desarrollo-sostenible-oportunidad-america-latina-caribe.

(2) Urdaneta–Carruyo E. Siglo XX. Cien años de infortunio y esplendor. Gac Méd Méx. 2005;141(1):75–84.

(3) ONU. Agua para un mundo sostenible: Datos y cifras. In: Informe de las Naciones Unidas sobre los recursos hídricos en el mundo [Internet]. 2015. p. 1–12. Available from: http://www.unesco.org/new/fileadmin/MULTIMEDIA/HQ/SC/images/WWDR2015Facts_Figures_SPA_web.pdf.

(4) Tsiarta N. C.O.VI.D.: Catalytic Ozonation for VIrus Disinfection – Why Not? Nowelties European Joint Doctorade [Internet]. 2020; Available from: https://nowelties.eu/c-o-vi-d-catalytic-ozonation-for-virus-disinfection-why-not/1727/.

(5) Jaramillo MF, Zea DAC, Galvis A. Reutilización de las aguas residuales municipales como estrategia de prevención y control de la contaminación hídrica. Caso de estudio: Cuencas de los ríos Bolo y Frayle (Colombia). Ing y Compet [Internet]. 2020;22(2):1–21. https://doi.org/10.25100/iyc.v22i2.9412.

(6) Vargas-Pineda OI, Trujillo-González JM, Torres-Mora MA. Huella hídrica: Una herramienta eficaz para el desafío de la sostenibilidad del agua. Ing y Compet [Internet]. 2020;22(1):1–12. https://doi.org/10.25100/iyc.v22i1.8429.

(7) SUEZ. El potencial de la reutilización de las aguas residuales, en una infografía [Internet]. ACTUALIDAD. 2017. Available from: https://www.retema.es/noticia/el-potencial-de-la-reutilizacion-de-las-aguas-residuales-en-una-infografia-SfzKX

(8) Porta-Díaz A. Regeneración y reutilización de aguas residuales depuradas [Tesis de maestría]. Universidad Politécnica de Cataluña; 2005. Available from: http://hdl.handle.net/2099.1/5209.

(9) Rosal R, Rodríguez A, Perdigón-Melón JA, Petre A, García-Calvo E, Fernández- AR, et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res [Internet]. 2010;44(2):578–88. https://doi.org/10.1016/j.watres.2009.07.004

(10) Rice RG, Robson M, Miller W, Hill AG. Uses of ozone in drinking water treatment. J AWWA [Internet]. 1981;73(1):44–57. https://doi.org/10.1002/j.1551-8833.1981.tb04637.x

(11) Rojas JAA, Giraldo LFG, Ruíz ÁA. Mineralización del colorante Tartrazina mediante un proceso de oxidación avanzada. Rev LASALLISTA Investig. 2009;6(2):46–53.

(12) Dewil R, Mantzavinos D, Poulios I, Rodrigo MA. New perspectives for Advanced Oxidation Processes. J Environ Manage [Internet]. 2017;195(2):93–9. https://doi.org/10.1016/j.jenvman.2017.04.010

(13) Wang J, Chen H. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Sci Total Environ [Internet]. 2020;704:135249. https://doi.org/10.1016/j.scitotenv.2019.135249

(14) Jeirani Z. Jeirani Z. Catalytic ozonation of emerging pollutants in water in the presence of MCM-41 and Fe-MCM-41 [Internet]. University of Saskatchewan; 2018. Available from: http://hdl.handle.net/10388/9242

(15) Rodriguez DJ, Serrano HA, Delgado A, Nolasco D, Saltiel G. De residuo a recurso [Internet]. Washington, DC; 2020. Available from: https://www.bancomundial.org/es/topic/water/publication/wastewater-initiative

(16) Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res [Internet]. 2021;133:285–96. https://doi.org/10.1016/j.jbusres.2021.04.070

(17) Scite_ [Internet]. Brooklyn, NY: National Science Foundation, National Institutes of Health; Available from: https://scite.ai/search

(18) Leiden University. VOSviewer [Internet]. Leiden, Netherlands: Leiden University; 2021. Available from: https://www.vosviewer.com/download

(19) Scimago Lab. WHAT IS SCIMAGOJR FOR? [Internet]. scimagojr.com. 2007 [cited 2021 Sep 4]. Available from: https://www.scimagojr.com/.

(20) Taylor M, Taylor A. The technology life cycle: Conceptualization and managerial implications. Int J Prod Econ. 2012;140(1):541–553. https://doi.org/10.1016/j.ijpe.2012.07.006

(21) The Rockefeller University. Loglet Analysis [Internet]. phe.rockefeller.edu. 2010 [cited 2021 Sep 4]. Available from: https://logletlab.com/?page=index&preload=library.get.1.

(22) Beltrán FJ, Rey A, Gimeno O. The Role of Catalytic Ozonation Processes on the Elimination of DBPs and Their Precursors in Drinking Water Treatment. Catalysts [Internet]. 2021;11:521. https://doi.org/10.3390/catal11040521

(23) Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, Ploeg M van der. Emerging pollutants in the environment: A challenge for water resource management. Int Soil Water Conserv Res [Internet]. 2015;3(1):57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

(24) Hoigné J. Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes. In: Hrubec J, editor. Quality and treatment of drinking water II - The Handbook of Environmental Chemistry Vol 5 Part C [Internet]. Heidelberg: Springer-Verlag; 1998. p. 83–141. https://doi.org/10.1007/978-3-540-68089-5_5

(25) Sáenz B. Caracterización de arena impregnada con TiO2 como catalizador heterogéneo en el proceso de ozonización de aguas contaminadas con naproxeno, ketoprofeno y cimetidina [Internet]. Universidad de Costa Rica; 2019. Available from: http://repositorio.sibdi.ucr.ac.cr:8080/jspui/handle/123456789/9145

(26) Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ [Internet]. 2003;46(4):639–69. https://doi.org/10.1016/S0926-3373(03)00326-6

(27) Rodríguez JL, Fuentes I, Aguilar CM, Valenzuela MA, Poznyak T, Chairez I. Catalytic Ozonation as a Promising Technology for Application in Water Treatment: Advantages and Constraints. In: Derco J, Koman M, editors. Ozone in Nature and Practice [Internet]. IntechOpen; 2018. p. 883–912. Available from: https://doi.org/10.5772/intechopen.76228

(28) Beltrán FJ, Rivas FJ, Montero-de-Espinosa R. Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 1. Homogeneous Catalytic Ozonation. Ind Eng Chem Res [Internet]. 2003;42(14):3210–3217. https://doi.org/10.1021/ie0209982

(29) Glaze WH, Kang J-W, Chapin DH. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone Sci Eng [Internet]. 1987;9(4):335–52. https://doi.org/10.1080/01919518708552148

(30) Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem Rev [Internet]. 1993;93(2):671–698. https://doi.org/10.1021/cr00018a003

(31) Hill GR. The Kinetics of the Oxidation of Cobaltous Ion by Ozone. J Am Chem Soc [Internet]. 1949;71(7):2434–2435. https://doi.org/10.1021/ja01175a056

(32) Hewes C., Davison R. Renovation of wastewater by ozonation. Water. 1973;71–80.

(33) Wang J, Xu LJ. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit Rev Environ Sci Technol [Internet]. 2012;42(3):251–325. https://doi.org/10.1080/10643389.2010.507698

(34) Khuntia S, Kumar-Sinha M, Singh P. Theoretical and experimental investigation of the mechanism of the catalytic ozonation process by using a manganese-based catalyst. Environ Technol [Internet]. 2021;42(4):632–9. https://doi.org/10.1080/09593330.2019.1640800

(35) Nawrocki J. Catalytic ozonation in water - controversies and questions. Discussion paper. Appl Catal B Environ [Internet]. 2013;142–143:465–71. https://doi.org/10.1016/j.apcatb.2013.05.061

(36) Ziylan A, Ince NH. Catalytic ozonation of ibuprofen with ultrasound and Fe-based catalysts. Catal Today [Internet]. 2015;240(Part A):2–8. https://doi.org/10.1016/j.cattod.2014.03.002

(37) Yildirim AO, Gul S, Eren O, Kusvuran E. A Comparative Study of Ozonation, Homogeneous Catalytic Ozonation, and Photocatalytic Ozonation for C.I. Reactive Red 194 Azo Dye Degradation. Clean – Soil, Air, Wate [Internet]. 2011;39(8):795–805. https://doi.org/10.1002/clen.201000192

(38) Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ [Internet]. 2010;99(1–2):27–42. https://doi.org/10.1016/j.apcatb.2010.06.033

(39) Messias RA, Filho HJI, Ferreira GA, Silva OA da, Siqueira AF. Catalytic Ozonation Using Fe2+in the Treatment of Dairy Effluent in a Semi-Batch Process with Recycle. J Braz Chem Soc [Internet]. 2015;26(7):1–11. http://dx.doi.org/10.5935/0103-5053.20150120

(40) Wu C-H, Kuo C-Y, Chang C-L. Homogeneous catalytic ozonation of C.I. Reactive Red 2 by metallic ions in a bubble column reactor. J Hazard Mater. 2008;154(1–3):748–55. https://doi.org/10.1016/j.jhazmat.2007.10.087

(41) Zhang Y, Zhao P, Li J, Hou D, Wang J. A hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment. Chemosphere2 [Internet]. 2016;160:134–40. https://doi.org/10.1016/j.chemosphere.2016.06.070

(42) Guo Y, Wang H, Wang B, Deng S, Huang J. Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model. Water Res [Internet]. 2018;142:383–95. https://doi.org/10.1016/j.watres.2018.06.019

(43) Malvestiti JA, Cruz-Alcalde A, López-Vinent N, Dantas RF, Sans C. Catalytic ozonation by metal ions for municipal wastewater disinfection and simulataneous micropollutants removal. Appl Catal B Environ [Internet]. 2019;259:118104. https://doi.org/10.1016/j.apcatb.2019.118104

(44) Balcıoğlu IA, Moral ÇK. Homogeneous and Heterogeneous Catalytic Ozonation of Pulp Bleaching Effluent. J Adv Oxid Technol [Internet]. 2016;11(3):543–50. https://doi.org/10.1515/jaots-2008-0314

(45) Crousier C, Pic J-S, Albet J, Baig S, Roustan M. Urban Wastewater Treatment by Catalytic Ozonation. Ozone Sci Eng [Internet]. 2016;38(1):3–13. https://doi.org/10.1080/01919512.2015.1113119

(46) Yu G, Wang Y, Cao H, Zhao H, Xie Y. Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. Environ Sci Technol [Internet]. 2020;54:5931–46. https://dx.doi.org/10.1021/acs.est.0c00575?ref=pdf

(47) Wang B, Zhang H, Wang F, Xiong X, Tian K. Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater. Catalysts [Internet]. 2019;9(3):241. https://doi.org/10.3390/catal9030241

(48) Beltrán FJ, Rivas J, Álvarez P, Montero-de-Espinosa. Kinetics of Heterogeneous Catalytic Ozone Decomposition in Water on an Activated Carbon. Ozone Sci Eng J Int Ozone Assoc [Internet]. 2007;24(4):227–37. http://dx.doi.org/10.1080/01919510208901614

(49) Huang Y, Cui C, Zhang D, Li L, Pan D. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon. Chemosphere [Internet]. 2015;119:295–301. http://dx.doi.org/10.1016/j.chemosphere.2014.06.060

(50) Nemati-Sani O, Navaei AA, Yazdani M, Taghavi M. Catalytic ozonation of ciprofloxacin using γ-Al2O3 nanoparticles in synthetic and real wastewaters. J Water Process Eng [Internet]. 2019;32:100894. https://doi.org/10.1016/j.jwpe.2019.100894

(51) Li Y, Wu L, Wang Y, Ke P, Xu J, Guan B. γ-Al2O3 doped with cerium to enhance electron transfer in catalytic ozonation of phenol. J Water Process Eng [Internet]. 2020;36:101313. https://doi.org/10.1016/j.jwpe.2020.101313

(52) Hu E, Shang S, Tao X, Jiang S, Chiu K. Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts. J Clean Prod [Internet]. 2016;137:1055–65. https://doi.org/10.1016/j.jclepro.2016.07.194

(53) Kolosov P, Peyot M-L, Yargeau V. Novel materials for catalytic ozonation of wastewater for disinfection and removal of micropollutants. Sci Total Environ [Internet]. 2018;644:1207–18. https://doi.org/10.1016/j.scitotenv.2018.07.022

(54) Polonite Nordic AB. Reactive filter media Polonite® [Internet]. What is Polonite® ? 2020. Available from: https://polonite.se/about-polonite/

(55) Zhang T, Li C, Ma J, Tian H, Qiang Z. Surface hydroxyl groups of synthetic α-FeOOH in promoting {radical dot}OH generation from aqueous ozone: Property and activity relationship. Appl Catal B Environ [Internet]. 2008;82(1–2):131–7. https://doi.org/10.1016/j.apcatb.2008.01.008

(56) Ernst M, Lurot F, JC S. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide. Appl Catal B Environ [Internet]. 2004;47(1):15–25. Available from: https://doi.org/10.1016/S0926-3373(03)00290-X

(57) Beltrán F, Rivas F, Montero-de-Espinosa R. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Appl Catal B Environ [Internet]. 2002;39(3):221–31. https://doi.org/10.1016/S0926-3373(02)00102-9

(58) Chen Y-H, Hsieh D-C, Shang N-C. Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst. J Hazard Mater [Internet]. 2011;192(3):1017–25. https://doi.org/10.1016/j.jhazmat.2011.06.005

(59) Wang Y, Chen L, Chen C, Xi J, Cao H. Occurrence of both hydroxyl radical and surface oxidation pathways in N-doped layered nanocarbons for aqueous catalytic ozonation. Appl Catal B Environ [Internet]. 2019;254:283–91. https://doi.org/10.1016/j.apcatb.2019.05.008

(60) Chen C, Yan X, Yoza BA, Zhou T, Li Y, Zhan Y, et al. Efficiencies and mechanisms of ZSM5 zeolites loaded with cerium, iron, or manganese oxides for catalytic ozonation of nitrobenzene in water. Sci Total Environ [Internet]. 2018;612:1424–32. https://doi.org/10.1016/j.scitotenv.2017.09.019

(61) AlGburi HR, Aziz HA, Zwain HM, Noor AFM. Treatment of Landfill Leachate by Heterogeneous Catalytic Ozonation with Granular Faujasite Zeolite. Environ Eng Sci [Internet]. 2020;ahead of p. https://doi.org/10.1089/ees.2020.0233

(62) Liu Z, Ma J, Cui Y, Zhang B. Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotube. Appl Catal B Environ [Internet]. 2009;92(3–4):301–6. https://doi.org/10.1016/j.apcatb.2009.08.007

(63) Afzal S, Quan X, Zhang J. High surface area mesoporous nanocast LaMO3 (M = Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism. Appl Catal B Environ [Internet]. 2017;206:692–703. https://doi.org/10.1016/j.apcatb.2017.01.072

(64) Wang Y, Xie Y, Sun H, Xiao J, Cao H. Efficient Catalytic Ozonation over Reduced Graphene Oxide for p-Hydroxylbenzoic Acid (PHBA) Destruction: Active Site and Mechanism. ACS Appl Mater Interfaces [Internet]. 2016;8(15):9710–20. https://doi.org/10.1021/acsami.6b01175

(65) Zhang T, Ma J. Catalytic ozonation of trace nitrobenzene in water with synthetic goethite. J Mol Catal A Chem [Internet]. 2008;279(1):82–9. https://doi.org/10.1016/j.molcata.2007.09.030

(66) Wang Y, Xie Y, Sun H, Xiao J, Cao H, Wang S. 2D/2D nano-hybrids of γ-MnO2 on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation. J Hazard Mater [Internet]. 2016;301:56–64. https://doi.org/10.1016/j.jhazmat.2015.08.031

(67) Deng F, Qiu S, Chen C, Ding X, Ma F. Heterogeneous Catalytic Ozonation of Refinery Wastewater over Alumina-Supported Mn and Cu Oxides Catalyst. Ozone Sci Eng [Internet]. 2015;37(6):546–55. https://doi.org/10.1080/01919512.2015.1065173

(68) Zhao L, Sun Z, Ma J. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution. Environ Sci Technol [Internet]. 2009;43(11):4157–63. https://doi.org/10.1021/es900084w

(69) Xing S, Lu X, Liu J, Zhu L, Ma Z, Wu Y. Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria. Chemosphere [Internet]. 2016;144:7–12. Available from: https://doi.org/10.1016/j.chemosphere.2015.08.044

(70) Martins R, Quinta-Ferreira R. Catalytic ozonation of phenolic acids over a Mn-Ce-O catalyst. Appl Catal B Environ [Internet]. 2009;90(1–2):268–77. https://doi.org/10.1016/j.apcatb.2009.03.023

(71) Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V. Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. J Hazard Mater [Internet]. 2009;162(2–3):588–606. https://doi.org/10.1016/j.jhazmat.2008.05.115

(72) Wang J, Bai Z. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J [Internet]. 2016;312:79–98. https://doi.org/10.1016/j.cej.2016.11.118

(73) Legube B, Karpel Vel Leitner N. Catalytic ozonation: A promising advanced oxidation technology for water treatment. Catal Today [Internet]. 1999;53(1):61–72. https://doi.org/10.1016/S0920-5861(99)00103-0

(74) Faria P, Órfao J, Pereira M. Activated carbon catalytic ozonation of oxamic and oxalic acids. Appl Catal B Environ [Internet]. 2008;79(3):237–43. https://doi.org/10.1016/j.apcatb.2007.10.021

(75) Einaga H, Futamura S. Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. J Catal [Internet]. 2004;227(2):304–12. https://doi.org/10.1016/j.jcat.2004.07.029

(76) Banco Mundial. Un 70% de las aguas residuales de Latinoamérica vuelven a los ríos sin ser tratadas. Noticias [Internet]. 2013 Jan 2; Available from: https://www.bancomundial.org/es/news/feature/2014/01/02/rios-de-latinoamerica-contaminados

(77) Mateo-Sagasta J, editor. Reutilizacion de aguas para agricultura en America Latina y el Caribe: estado, principios y necesidades. [Internet]. Santiago, Chile: FAO; 2013. Available from: https://hdl.handle.net/10568/91293

(78) Reichert G, Hilgert S, Fuchs S, Azevedo JCR. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environ Pollut [Internet]. 2019;255(1):113140. https://doi.org/10.1016/j.envpol.2019.113140

(79) Castro J, Paz S, Mena N, Urresta J, Machuca-Martinez F. Evaluation of heterogeneous catalytic ozonation process for diclofenac degradation in solutions synthetically prepared. Env Sci Pollut Res [Internet]. 2019;26:4488–4497. https://doi.org/10.1007/s11356-018-2582-1

(80) MINAMBIENTE. Resolución No. 631 de 2015 [Internet]. Colombia; 2015 p. 1–93. Available from: http://www.emserchia.gov.co/PDF/Resolucion631.pdf.

(81) Gil MJ, Soto AM, Usma JI, Gutiérrez OD. Contaminantes emergentes en aguas, efectos y posibles tratamientos. Prod + Limpia. 2012;7(2):52–73.

(82) Oliveira JS de, Salla J da S, Kuhn RC, Jahn SL, Foletto EL. Catalytic Ozonation of Melanoidin in Aqueous Solution over CoFe2O4 Catalyst. Mat Res [Internet]. 2019;22(1):e20180405. https://doi.org/10.1590/1980-5373-MR-2018-0405

(83) Peixoto ALC, Silva MB, Filho HJI. Leachate treatment process at a municipal stabilized landfill by catalytic ozonation: an exploratory study from Taguchi orthogonal array. Braz J Chem Eng [Internet]. 2009;26(3):481–92. https://doi.org/10.1590/S0104-66322009000300004

(84) Zubillaga A de la S. Tendencias legislativas sobre contaminantes emergentes en Europa. In: JORNADA ESAMUR [Internet]. Consorcio de Aguas de Bilbao Bizkaia; 2016. Available from: https://www.esamur.com/public/file/4JornadaESAMUR20161107AdlSotarev2.pdf

(85) Emilio Lentini. El futuro de los servicios de agua y saneamiento en América Latina [Internet]. Banco Interamericano de Desarrollo; 2015. Available from: https://publications.iadb.org/publications/spanish/document/El-futuro-de-los-servicios-de-agua-y-saneamiento-en-América-Latina-Desafíos-de-los-operadores-de-áreas-urbanas-de-más-de-300000-habitantes.pdf

(86) Fuentes I, Rodríguez J, Poznyak T, Chairez I. Photocatalytic ozonation of terephthalic acid: a by-product-oriented decomposition study. Environ Sci Pollut Res [Internet]. 2014;21:12241–12248. https://doi-org.bd.univalle.edu.co/10.1007/s11356-014-3176-1

(87) Rodríguez J, Valenzuela M, Tiznado H, Poznyak T, Flores E. Synthesis of nickel oxide nanoparticles supported on SiO2 by sensitized liquid phase photodeposition for applications in catalytic ozonation. J Mol Catal A Chem [Internet]. 2014;392:39–49. https://doi.org/10.1016/j.molcata.2014.04.028

(88) Lara-Ramos J, Diaz-Angulo J, Machuca-Martínez F. Use of modified flotation cell as ozonation reactor to minimize mass transfer limitations. Chem Eng J [Internet]. 2021;405:126978. https://doi.org/10.1016/j.cej.2020.126978

(89) Bessegato G, Cardoso J, da Silva B, Zanoni MV. Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in Acid Yellow 1 mineralization. Appl Catal B Environ [Internet]. 2016;180:161–8. https://doi.org/10.1016/j.apcatb.2015.06.013

Descargas

Los datos de descargas todavía no están disponibles.
1 2 3 > >>