Contenido principal del artículo

Scenedesmus sp. & Chlorella sp., son dos microalgas aisladas de termales localizados en Norte de Santander, las cuales son estudiadas con el fin de explorar su potencial biotecnológico. El presente trabajo tuvo como objetivo diseñar un protocolo mediante la evaluación de dos factores, el efecto de stress por radiación lumínica y el tiempo de incubación mediante el escalonamiento del cultivo desde Caja Petri en Medio de cultivo Bold basal (BBM) con un tiempo de incubación de 15 días a un tubo Falcon de 15 mL con 10 mL de medio líquido y fue en esta parte donde se evaluó el parámetro de tiempo de incubación, por último fue escalado a un fotobioreactor utilizando un volumen de trabajo de 200 mL, empleando el mismo medio de cultivo con el fin de analizar las variables estudiadas  se empleó un diseño de experimentos de superficie compuesto, central, no factorial en el software STATISTICA 7.0, a partir del cual se obtuvo una ecuación lineal que permitio determinar el tiempo de incubación y fotoperiodo óptimo para una mayor producción de microalgas y como resultados se determinó que en la microalga Scenedesmus sp. los dos factores influyen en la producción de carotenoides; para Chlorella sp. no influye el tiempo de incubación y el fotoperiodo es fundamental en la producción de estos metabolitos.

1.
Martínez JBG, Machuca-Martinez F, Cardenas-Gutierrez IY. Protocolo para el mantenimiento de cepas y escalamiento en la producción de microalgas de interés industrial. inycomp [Internet]. 18 de abril de 2021 [citado 25 de septiembre de 2022];23(1):e10673. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/10673

(1) Cezare-Gomes EA, Mejia-da-Silva L del C, Pérez-Mora LS, Matsudo MC, Ferreira-Camargo LS, Singh AK, et al. Potential of Microalgae Carotenoids for Industrial Application. Appl Biochem Biotechnol. 2019;188:602–634. https://doi.org/10.1007/s12010-018-02945-4.

(2) Torregrosa-Crespo J, Montero, Z., Fuentes J, Reig García-Galbis M, Garbayo I, Vílchez C, Martínez-Espinosa R. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganism. Mar Drugs. 2018;16(6):203.https://doi.org/10.3390/md16060203.

(3) Novovesk L, Ross M, Stanley M, Pradelles R, Wasiolek V, Sassi J. Microalgal Carotenoids : A Review of Production , Current Markets , Regulations , and Future Direction. Mar Drugs. 2019;17(11):640. https://doi.org/10.3390/md17110640.

(4) Gong M, Bassi A. Carotenoids from microalgae: A review of recent developments. Biotechnol Adv. 2016;34(8):1396–412. https://doi.org/10.1016/j.biotechadv.2016.10.005.

(5) Borowitzka M. Commercial-Scale Production of Microalgae for Bioproducts. In: La Barre S, Bates S, editors. Blue Biotechnology: Production and Use of Marine Molecules. rev. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co; 2018. p. 51–2.

(6) Alvensleben N, Heimann K. The Potential of Microalgae for Biotechnology: A Focus on Carotenoids. In: La Barre S, Bates S, editors. Blue Biotechnology: Production and Use of Marine Molecules. rev. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co; 2018. p. 131–2.

(7) Pourkarimi S, Hallajisani, A Alizadehdakhel A, Nouralishahi A. Biocatalysis and Agricultural Biotechnology Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatal Agric Biotechnol. 2020;29:101771. https://doi.org/10.1016/j.bcab.2020.101771.

(8) Andersen R, Berges J, Harrison P, Watanabe M. Appendix A—Recipes for Freshwater and Seawater Media. In: Andersen R, editor. Algal Culturing Techniques. Burlington, MA: Elsevier Academic Press; 2005. p. 429–538.

(9) Statsoft I. STATISTICA (data analysis software system) [Internet]. 2004. Available from: https://www.statsoft.de/en/statistica/statistica-software.

(10) Moheimani N, Borowitzka M, Isdepsky A, Fon-Sing S. Standard methods for measuring growth of algae and their composition. In: Borowitzka M, Moheimani N, editors. Algae for biofuels and energy. Springer, Dordrecht; 2013. p. 265–284.

(11) Přibyla P, Cepáka V, Kaštánekb P, Zachlederc V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res. 2015;11:22–7. https://doi.org/10.1016/j.algal.2015.05.020

(12) Přibyla P, Pilnýb J, Cepáka V, Kaštánekc P. The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Res. 2016;16:69–75.https://doi.org/10.1016/j.algal.2016.02.028.

(13) Wang S, Stiles AR, Guo C, Liu C. Microalgae cultivation in photobioreactors: An overview of light characteristics. Eng Life Sci. 2014;14:550–9. https://doi.org/10.1002/elsc.201300170.

(14) Bohne F, Linden H. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim Biophys Acta. 2002;1579(1):26–34. https://doi.org/10.1016/S0167-4781(02)00500-6.

(15) Scharff C, Domurath N, Wensch-Dorendorf M, Schröder F. Effect of different photoperiods on the biochemical profile of the green algae C. vulgaris and S. obliquus. In: ISHS Acta Horticulturae 1170: International Symposium on New Technologies and Management for Greenhouses - GreenSys2015. 2017. p. 1149–56. https://doi.org/10.17660/ActaHortic.2017.1170.148.

1 2 3 > >>