Protocolo para el mantenimiento de cepas y escalamiento en la producción de microalgas de interés industrial
Contenido principal del artículo
Scenedesmus sp. & Chlorella sp., son dos microalgas aisladas de termales localizados en Norte de Santander, las cuales son estudiadas con el fin de explorar su potencial biotecnológico. El presente trabajo tuvo como objetivo diseñar un protocolo mediante la evaluación de dos factores, el efecto de stress por radiación lumínica y el tiempo de incubación mediante el escalonamiento del cultivo desde Caja Petri en Medio de cultivo Bold basal (BBM) con un tiempo de incubación de 15 días a un tubo Falcon de 15 mL con 10 mL de medio líquido y fue en esta parte donde se evaluó el parámetro de tiempo de incubación, por último fue escalado a un fotobioreactor utilizando un volumen de trabajo de 200 mL, empleando el mismo medio de cultivo con el fin de analizar las variables estudiadas se empleó un diseño de experimentos de superficie compuesto, central, no factorial en el software STATISTICA 7.0, a partir del cual se obtuvo una ecuación lineal que permitio determinar el tiempo de incubación y fotoperiodo óptimo para una mayor producción de microalgas y como resultados se determinó que en la microalga Scenedesmus sp. los dos factores influyen en la producción de carotenoides; para Chlorella sp. no influye el tiempo de incubación y el fotoperiodo es fundamental en la producción de estos metabolitos.
(1) Cezare-Gomes EA, Mejia-da-Silva L del C, Pérez-Mora LS, Matsudo MC, Ferreira-Camargo LS, Singh AK, et al. Potential of Microalgae Carotenoids for Industrial Application. Appl Biochem Biotechnol. 2019;188:602–634. https://doi.org/10.1007/s12010-018-02945-4.
(2) Torregrosa-Crespo J, Montero, Z., Fuentes J, Reig García-Galbis M, Garbayo I, Vílchez C, Martínez-Espinosa R. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganism. Mar Drugs. 2018;16(6):203.https://doi.org/10.3390/md16060203.
(3) Novovesk L, Ross M, Stanley M, Pradelles R, Wasiolek V, Sassi J. Microalgal Carotenoids : A Review of Production , Current Markets , Regulations , and Future Direction. Mar Drugs. 2019;17(11):640. https://doi.org/10.3390/md17110640.
(4) Gong M, Bassi A. Carotenoids from microalgae: A review of recent developments. Biotechnol Adv. 2016;34(8):1396–412. https://doi.org/10.1016/j.biotechadv.2016.10.005.
(5) Borowitzka M. Commercial-Scale Production of Microalgae for Bioproducts. In: La Barre S, Bates S, editors. Blue Biotechnology: Production and Use of Marine Molecules. rev. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co; 2018. p. 51–2.
(6) Alvensleben N, Heimann K. The Potential of Microalgae for Biotechnology: A Focus on Carotenoids. In: La Barre S, Bates S, editors. Blue Biotechnology: Production and Use of Marine Molecules. rev. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co; 2018. p. 131–2.
(7) Pourkarimi S, Hallajisani, A Alizadehdakhel A, Nouralishahi A. Biocatalysis and Agricultural Biotechnology Factors affecting production of beta-carotene from Dunaliella salina microalgae. Biocatal Agric Biotechnol. 2020;29:101771. https://doi.org/10.1016/j.bcab.2020.101771.
(8) Andersen R, Berges J, Harrison P, Watanabe M. Appendix A—Recipes for Freshwater and Seawater Media. In: Andersen R, editor. Algal Culturing Techniques. Burlington, MA: Elsevier Academic Press; 2005. p. 429–538.
(9) Statsoft I. STATISTICA (data analysis software system) [Internet]. 2004. Available from: https://www.statsoft.de/en/statistica/statistica-software.
(10) Moheimani N, Borowitzka M, Isdepsky A, Fon-Sing S. Standard methods for measuring growth of algae and their composition. In: Borowitzka M, Moheimani N, editors. Algae for biofuels and energy. Springer, Dordrecht; 2013. p. 265–284.
(11) Přibyla P, Cepáka V, Kaštánekb P, Zachlederc V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res. 2015;11:22–7. https://doi.org/10.1016/j.algal.2015.05.020
(12) Přibyla P, Pilnýb J, Cepáka V, Kaštánekc P. The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Res. 2016;16:69–75.https://doi.org/10.1016/j.algal.2016.02.028.
(13) Wang S, Stiles AR, Guo C, Liu C. Microalgae cultivation in photobioreactors: An overview of light characteristics. Eng Life Sci. 2014;14:550–9. https://doi.org/10.1002/elsc.201300170.
(14) Bohne F, Linden H. Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. Biochim Biophys Acta. 2002;1579(1):26–34. https://doi.org/10.1016/S0167-4781(02)00500-6.
(15) Scharff C, Domurath N, Wensch-Dorendorf M, Schröder F. Effect of different photoperiods on the biochemical profile of the green algae C. vulgaris and S. obliquus. In: ISHS Acta Horticulturae 1170: International Symposium on New Technologies and Management for Greenhouses - GreenSys2015. 2017. p. 1149–56. https://doi.org/10.17660/ActaHortic.2017.1170.148.
- Fiderman Machuca-Martínez, Miguel Angel-Mueses, José Antonio Lara-Ramos, Solución de la ecuación de Rachford – Rice por homotopía diferencial , Ingeniería y Competitividad: Vol. 22 Núm. 2 (2020): Ingeniería y Competitividad
- Dorance Becerra Moreno, Yrany M. Rubio-Gomez, Andrés F. Barajas-Solano, Luisa F. Ramírez Ríos, Fiderman Machuca-Martínez, Una revisión sobre el tratamiento para lixiviados de rellenos sanitarios mediante el acople de procesos avanzados de oxidación y biológicos , Ingeniería y Competitividad: Vol. 25 Núm. Suplemento (2023): Edición Especial
- Fiderman Machuca-Martínez, Importancia de los datos científicos y su publicación como artículo de datos , Ingeniería y Competitividad: Vol. 22 Núm. 1 (2020): Ingeniería y Competitividad
- Fiderman Machuca-Martinez, Patentes universitarias en Colombia: un nuevo paradigma , Ingeniería y Competitividad: Vol. 21 Núm. 2 (2019): Ingeniería y Competitividad
- Charles Cardona, Fiderman Machuca-Martínez, Nilson Marriaga-Cabrales, Tratamiento de vinaza empleando electrodisolución y floculación química , Ingeniería y Competitividad: Vol. 15 Núm. 2 (2013): Ingeniería y Competitividad
- Astrid C. Angel-Ospina, Fiderman Machuca-Martínez, Ozonización catalítica en el tratamiento de Contaminantes de Preocupación Emergente en aguas residuales: Un análisis bibliométrico , Ingeniería y Competitividad: Vol. 24 Núm. 1 (2022): Ingeniería y Competitividad
- Ruben Jesus Camargo Amado, Juan Carlos Osorio, Fiderman Machuca-Martinez, Doctorado en Ingeniería de la Universidad del Valle: un pilar fundamental para el Desarrollo Regional y Nacional , Ingeniería y Competitividad: Vol. 25 Núm. Suplemento (2023): Edición Especial
- Miguel A. Mueses, Fiderman Machuca-Martínez, Modelo de adsorción molecular para compuestos orgánicos sobre TiO2 – P25 mediante el método de afinidad protónica , Ingeniería y Competitividad: Vol. 15 Núm. 2 (2013): Ingeniería y Competitividad
- Michael E. Pérez Roa, Andrés F. Barajas Solano, Janet B. García Martínez, Crisóstomo Barajas Ferreira, Fiderman Machuca-Martínez, Análisis bibliométrico del ciclo de vida aplicado a procesos de tratamientos de agua residual con microalgas , Ingeniería y Competitividad: Vol. 25 Núm. Suplemento (2023): Edición Especial
- Valentina Núñez, Jaime Fonseca, Iván Uribe, Anibal Serna, Dario Yesid Peña , Fiderman Machuca-Martinez, Preparando los gasoductos para el transporte de mezclas de gas natural – hidrógeno en Colombia , Ingeniería y Competitividad: Vol. 25 Núm. Suplemento (2023): Edición Especial
Aceptado 2020-11-10
Publicado 2021-01-15
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).