Main Article Content

Authors

The accurate simulation of wind flow in the atmospheric boundary layer in a wind tunnel is crucial for various engineering applications, spanning fields such as civil and environmental engineering. With the aim of investigating and characterizing the behavior and impact of wind on scaled models of civil structures in the Wind Tunnel of the School of Civil Engineering at the University of Valle, the main objective is to determine the appropriate distribution of turbulence-generating devices to replicate specific velocity profiles required for rural, suburban, and urban exposure types that describe the atmospheric boundary layer. This study is based on reproducing three velocity profiles, representative of urban, suburban, and rural exposures, at a 1:200 scale. To achieve this, full-scale Irwin vortex generators, a castellated barrier, and Counihan and Gartshore roughness elements were implemented. Velocity measurements in the wind tunnel test section were conducted using a hot-wire anemometry system and Pitot tubes. Experimental results obtained by simulating velocity profiles demonstrated an acceptable correspondence with theoretical profiles established in the NSR-10 design code. This study contributes to the advancement in understanding and replicating velocity profiles in the context of simulating the atmospheric boundary layer in wind tunnels in Colombia, supporting key applications in the field of engineering.

Martha Elena Delgado Osorio, Universidad del Valle, Cali, Colombia

https://orcid.org/0000-0002-4519-457X

Albert Ortiz, Universidad del Valle, Cali, Colombia

https://orcid.org/0000-0001-9657-2174

Jhon Jairo Barona, Universidad del Valle, Cali, Colombia

https://orcid.org/0000-0002-3805-1423

Johannio Marulanda Casas, Universidad del Valle, Cali, Colombia

https://orcid.org/0000-0001-9901-6229

Peter Thomson, Universidad del Valle, Cali, Colombia

https://orcid.org/0000-0002-9404-0710

1.
Delgado Osorio ME, Ortiz A, Barona JJ, Marulanda Casas J, Thomson P. Simulation of Atmospheric Boundary Layer Wind Tunnel of Universidad del Valle . inycomp [Internet]. 2024 May 28 [cited 2024 Nov. 5];26(2):e-20713317. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13317

Hancock PE, Hayden P. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers. Boundary-Layer Meteorol. 2018;168:29–57. DOI: https://doi.org/10.1007/s10546-018-0337-7

Barlow JB, Rae WHJ, Pope A. Low Speed Wind Tunnel Testing. Third. John Wiley & Sons, Ltd; 1999. 724 p.

Shojaee SMN, Uzol O, Kurç Ö. Atmospheric boundary layer simulation in a short wind tunnel. Int J Environ Sci Technol. 2014;11(1):59–68. DOI: https://doi.org/10.1007/s13762-013-0371-4

Kozmar H. Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow. J Wind Eng Ind Aerodyn. 2011;99(2–3):130–6. DOI: https://doi.org/10.1016/j.jweia.2010.11.001

Richards PJ, Norris SE. Appropriate boundary conditions for a pressure driven boundary layer. J Wind Eng Ind Aerodyn. 2015;142:43–52. DOI: https://doi.org/10.1016/j.jweia.2015.03.003

Avelar AC, Brasileiro FLC, Marto AG, Marciotto ER, Fisch G, Faria AF. Wind tunnel simulation of the atmospheric boundary layer for studying the wind pattern at centro de lançamento de alcântara. J Aerosp Technol Manag. 2012;4(4):463–73. DOI: https://doi.org/10.5028/jatm.2012.04044912

Pires LBM, Roballo ST, Fisch G, Avelar AC, da Mota Girardi R, Gielow R. Atmospheric flow measurements using the PIV and HWA techniques. J Aerosp Technol Manag. 2010;2(2):127–36. DOI: https://doi.org/10.5028/jatm.2010.02027410

Asociación Colombiana de Ingeniería Sísmica. Reglamento Colombiano de Construcción Sismo Resistente NSR-10. Comisión Asesora Permanente para el régimen de Construcciones Sismo Resistentes (Ley 400 de 1997), editor. Bogotá; 2010.

Kuznetsov S, Ribičić M, Pospíšil S, Plut M, Trush A, Kozmar H. Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices. Exp Tech. 2017;41:643–61. DOI: https://doi.org/10.1007/s40799-017-0196-z

Xie D, Xiao P, Cai N, Sang L, Dou X, Wang H. Field and Wind Tunnel Experiments of Wind Field Simulation in the Neutral Atmospheric Boundary Layer. Atmosphere (Basel). 2022;13(12):1–14. DOI: https://doi.org/10.3390/atmos13122065

Hlevca D, Degeratu M. Atmospheric boundary layer modeling in a short wind tunnel. Eur J Mech B/Fluids. 2020;79:367–75. DOI: https://doi.org/10.1016/j.euromechflu.2019.10.003

Hancock PE, Hayden P. Wind-Tunnel Simulation of Approximately Horizontally Homogeneous Stable Atmospheric Boundary Layers. Boundary-Layer Meteorol. 2021;180(1):5–26. DOI: https://doi.org/10.1007/s10546-021-00611-7

Counihan J. An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmos Environ Pergamon Press. 1969;3:197–214. DOI: https://doi.org/10.1016/0004-6981(69)90008-0

Irwin H. The Design of Spires for Wind Simulation. J Wind Eng Ind Aerodyn. 1981;7:361–6. DOI: https://doi.org/10.1016/0167-6105(81)90058-1

Gartshore IS, De Croos KA. Roughness Element Geometry Required for Wind Tunnel Simulations of the Atmospheric Wind. Am Soc Mech Eng. 1976;(76-WA/FE-18):480–5. DOI: https://doi.org/10.1115/1.3448821

Kozmar H. Characteristics of natural wind simulations in the TUM boundary layer wind tunnel. Theor Appl Climatol. 2011;106(1–2):95–104. DOI: https://doi.org/10.1007/s00704-011-0417-9

Hongtao XU, Mingshui LI, Haili LIAO YH. Simulation of Atmosphere Boundary Layer by Using Wedges and Rough Elements Technique. J Highw Transp Res Dev. 2011;5(1):41–4. DOI: https://doi.org/10.1061/JHTRCQ.0000040

Chen Z, Wei C, Chen Z, Wang S, Tang L. Numerical Simulation of Atmospheric Boundary Layer Turbulence in a Wind Tunnel Based on a Hybrid Method. Atmosphere (Basel). 2022;13. DOI: https://doi.org/10.3390/atmos13122044

1 2 > >> 
Received 2023-10-31
Accepted 2024-04-26
Published 2024-05-28