Técnicas de visión artificial y aprendizaje de máquinas para la detección y clasificación de grietas
Contenido principal del artículo
En los procesos de mantenimiento y rehabilitación de vías, es importante el desarrollo de procedimientos que contribuyan a la evaluación de la condición del pavimento. Los métodos de inspección de la superficie de pavimento que emplean imágenes capturan información permitiendo un análisis cuantitativo. Este documento presenta una metodología para la detección de grietas en el pavimento, mediante la aplicación de técnicas de procesamientos de imágenes y redes neuronales artificiales; está dividido en cuatro etapas: 1. Adquisición de las imágenes, 2. Procesamiento de imágenes, iii. Extracción de características y iv. Clasificación utilizando RNA. La metodología se aplicó para la detección de los deterioros: grieta longitudinal, bache y piel de cocodrilo. La clasificación se realizó mediante una red neuronal MLP con configuración (12 14 3), la cual obtuvo una exactitud de 95,56% y una precisión de 94,44%. La metodología propuesta puede ser útil para las organizaciones gubernamentales en la evaluación de la malla vial.
Macea-Mercado LF, Morales L, Márquez-Díaz LG. Un sistema de gestión de pavimentos basado en nuevas tecnologías para países en vía de desarrollo. Ing Investig Tecnol. abril de 2016;17(2):223-36.
Ragnoli A, De Blasiis MR, Di Benedetto A. Pavement distress detection methods: A review. Vol. 3, Infrastructures. MDPI Multidisciplinary Digital Publishing Institute; 2018. p. 58.
Chen X, Zhang Z, Lambert JR. Field performance evaluation of stone interlayer pavement in Louisiana. Int J Pavement Eng. 14 de septiembre de 2014;15(8):708-17.
Cafiso S, Di Graziano A, Fedele R, Marchetta V, Praticò F. Sensor-based pavement diagnostic using acoustic signature for moduli estimation. Int J Pavement Res Technol. 1 de noviembre de 2020;13(6):573-80.
Goulias DG, Cafiso S, Di Graziano A, Saremi SG, Currao V. Condition Assessment of Bridge Decks through Ground-Penetrating Radar in Bridge Management Systems. J Perform Constr Facil. 5 de octubre de 2020;34(5):04020100.
Wu S, Fang J, Zheng X, Li X. Sample and Structure-Guided Network for Road Crack Detection. IEEE Access. 2019;7:130032-43.
Moghadas Nejad F, Zakeri H. A comparison of multi-resolution methods for detection and isolation of pavement distress. Expert Syst Appl. 1 de marzo de 2011;38(3):2857-72.
Guan H, Li J, Yu Y, Chapman M, Wang C. Automated road information extraction from mobile laser scanning data. IEEE Trans Intell Transp Syst. 1 de febrero de 2015;16(1):194-205.
Wang W, Wang M, Li H, Zhao H, Wang K, He C, et al. Pavement crack image acquisition methods and crack extraction algorithms: A review. Vol. 6, Journal of Traffic and Transportation Engineering (English Edition). Chang’an University; 2019. p. 535-56.
Cubero-Fernandez A, Rodriguez-Lozano FJ, Villatoro R, Olivares J, Palomares JM. Efficient pavement crack detection and classification. J Image Video Proc. diciembre de 2017;2017(1):1-11.
Lopez Droguett E, Tapia J, Yanez C, Boroschek R. Semantic segmentation model for crack images from concrete bridges for mobile devices. Proc Inst Mech Eng Part O J Risk Reliab. 24 de octubre de 2020;
Nair A, Hemalatha R, Sangeetha P, Harish Kumar K, Dinesh Kumar P, Sahith IS, et al. Efficient crack detection and quantification in concrete structures using IoT. Aust J Electr Electron Eng. 2021;18(1):43-57.
Choudhary GK, Dey S. Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks. En: 2012 IEEE 5th International Conference on Advanced Computational Intelligence, ICACI 2012. 2012. p. 404-11.
Banharnsakun A. Hybrid ABC-ANN for pavement surface distress detection and classification. Int J Mach Learn Cybern. 1 de abril de 2017;8(2):699-710.
Hoang ND, Nguyen QL. A novel method for asphalt pavement crack classification based on image processing and machine learning. Eng Comput. 1 de abril de 2019;35(2):487-98.
Li L, Sun L, Ning G, Tan S. Automatic pavement crack recognition based on BP neural network. Promet - Traffic - Traffico. 2014;26(1):11-22.
Maguire M, Dorafshan S, Thomas R. {SDNET2018}: {A} concrete crack image dataset for machine learning applications. Browse Datasets. mayo de 2018;
Ying L, Salari E. Beamlet Transform-Based Technique for Pavement Crack Detection and Classification. Comput-Aided Civ Infrastruct Eng. 1 de noviembre de 2010;25(8):572-80.
Bruna J, Mallat S. Classification with scattering operators. En: {CVPR} 2011. 2011. p. 1561-6.
Oyallon E, Mallat S, Sifre L. Generic {Deep} {Networks} with {Wavelet} {Scattering}. 2013;
Jingyi Li, Ning Wang, Ying Liu, Yuemei Yang. A {Study} of {Crack} {Detection} {Algorithm}. En: 2015 {Fifth} {International} {Conference} on {Instrumentation} and {Measurement}, {Computer}, {Communication} and {Control} ({IMCCC}). 2015. p. 1184-7.
Dorafshan S, Thomas RJ, Maguire M. Benchmarking {Image} {Processing} {Algorithms} for {Unmanned} {Aerial} {System}-{Assisted} {Crack} {Detection} in {Concrete} {Structures}. Infrastructures. 2019;4(2):19.
Hoang ND, Nguyen QL. Metaheuristic {Optimized} {Edge} {Detection} for {Recognition} of {Concrete} {Wall} {Cracks}: {A} {Comparative} {Study} on the {Performances} of {Roberts}, {Prewitt}, {Canny}, and {Sobel} {Algorithms}. Quaranta G, editor. Adv Civ Eng. 2018;2018:7163580.
Abdel-Qader I, Abudayyeh O, Kelly ME. Analysis of {Edge}-{Detection} {Techniques} for {Crack} {Identification} in {Bridges}. J Comput Civ Eng. 2003;17(4):255-63.
Li B, Zhang P lin, Wang Z jun, Mi S shan, Zhang Y tang. Gear fault detection using multi-scale morphological filters. Measurement. 2011;44(10):2078-89.
Youquan H, Hanxing Q, Jian W, Wei Z, Jianfang X. Studying of road crack image detection method based on the mathematical morphology. En: 2011 4th {International} {Congress} on {Image} and {Signal} {Processing}. 2011. p. 967-9.
Merazi-Meksen T, Boudraa M, Boudraa B. Mathematical morphology for {TOFD} image analysis and automatic crack detection. Ultrasonics. 2014;54(6):1642-8.
Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, et al. Feature extraction and classification for {EEG} signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med. 2015;38(1):139-49.
Mohammed A, al azzo F, Milanova M. Classification of {Alzheimer} {Disease} based on {Normalized} {Hu} {Moment} {Invariants} and {Multiclassifier}. Int J Adv Comput Sci Appl. 2017;8.
Theodoridis S, Koutroumbas K. Feature Generation II. En: Pattern Recognition. Elsevier; 2009. p. 411-79.
Jahanshahi MR, Masri SF. A {Novel} {Crack} {Detection} {Approach} for {Condition} {Assessment} of {Structures}. 2012;388-95.
Kabir S. Imaging-based detection of {AAR} induced map-crack damage in concrete structure. NDT E Int. 2010;43(6):461-9.
Kaseko MS, Ritchie SG. A neural network-based methodology for pavement crack detection and classification. Transp Res Part C Emerg Technol. 1993;1(4):275-91.
Lee BJ, Lee H “David”. Position-{Invariant} {Neural} {Network} for {Digital} {Pavement} {Crack} {Analysis}. Comput-Aided Civ Infrastruct Eng. 2004;19(2):105-18.
- Johannio Marulanda A., Peter Thomson, Johannio Marulanda C., Monitoreo de Salud Estructural , Ingeniería y Competitividad: Vol. 2 Núm. 2 (2000)
- Johannio Marulanda, Peter Thomson, Julio Cesar Tocoche, Repotenciación sísmica con aislamiento de cubierta como amortiguador de masa sintonizado para edificios académicos , Ingeniería y Competitividad: Vol. 25 Núm. 1 (2023): Ingeniería y Competitividad.
- Claudia P. Moreno, Peter Thomson, Incertidumbre paramétrica en modelos dinámicos de estructuras civiles , Ingeniería y Competitividad: Vol. 12 Núm. 1 (2010)
- Horacio A. Coral, José M. Ramírez, Esteban E. Rosero, Peter Thomson, Daniel Gómez, Johannio Marulanda, Diseño, construcción y control de un simulador sísmico uniaxial tele-operable para modelos estructurales a pequeña escala , Ingeniería y Competitividad: Vol. 12 Núm. 2 (2010)
- Albert R. Ortiz, Daniel Gómez, Peter Thomson, Efectos de la interacción humano-estructura en las propiedades dinámicas de una tribuna , Ingeniería y Competitividad: Vol. 14 Núm. 1 (2012): Ingeniería y Competitividad
- Johannio Marulanda, Juan M. Caicedo, Peter Thomson, Identificación de formas modales bajo excitación armónica usando sensores móviles , Ingeniería y Competitividad: Vol. 19 Núm. 1 (2017): Revista Ingeniería y Competitividad
- Helene Tischer, Peter Thomson, Johannio Marulanda A., Comparación de tres transformadas para distribuciones tiempo-frecuencia por medio de su aplicación a registros de vibraciones ambientales , Ingeniería y Competitividad: Vol. 9 Núm. 2 (2007)
- Diana C. Millán-Yusti, Peter Thomson, Johannio Marulanda, Evaluation of the structural reliability of a grandstand subjected to anthropic loads , Ingeniería y Competitividad: Vol. 18 Núm. 1 (2016): Ingeniería y Competitividad
- Martha Elena Delgado Osorio, Albert Ortiz, Jhon Jairo Barona, Johannio Marulanda Casas, Peter Thomson, Simulación de la capa límite atmosférica en el túnel de viento de la Universidad del Valle , Ingeniería y Competitividad: Vol. 26 Núm. 2 (2024): Ingeniería y Competitividad
- Albert R. Ortíz, Johannio Marulanda C., Peter Thomson, Caracterización del comportamiento dinámico de la tribuna occidental del estadio Pascual Guerrero durante un concierto musical , Ingeniería y Competitividad: Vol. 9 Núm. 2 (2007)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).