Main Article Content

Authors

For road maintenance and rehabilitation, it is important to develop procedures to evaluate pavement condition. Imaging methods can be used to obtain data to analyze a pavement surface. A methodology for crack detection is presented in this paper that is based on image processing techniques and artificial neural networks. The methodology is implemented in four stages: 1. image acquisition, 2. image processing, 3. feature extraction, and 4. classification using an artificial neural network. The methodology was used to detect deterioration in the form of longitudinal cracks, potholes, and alligator cracking. The classification was performed using a multilayer perceptron (MLP) neural network within a (12 14 3) configuration, resulting in an accuracy of 95.56% and a precision of 94.44%. The proposed methodology could be used to help governmental organizations evaluate a road network.

Lizeth Tello-Cifuentes, Universidad del Valle, Cali, Colombia

https://orcid.org/0000-0001-5990-3405

Johannio Marulanda, Universidad del valle, Cali, Colombia

https://orcid.org/0000-0001-9901-6229

Peter Thomson, Universidad del Valle, Cali, Colombia

  https://orcid.org/0000-0002-9404-0710

1.
Tello-Cifuentes L, Marulanda J, Thomson P. Computer vision and machine learning for the detection and classification of pavement cracks. inycomp [Internet]. 2023 May 5 [cited 2024 Dec. 22];25(2):e-20512143. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12143

Macea-Mercado LF, Morales L, Márquez-Díaz LG. Un sistema de gestión de pavimentos basado en nuevas tecnologías para países en vía de desarrollo. Ing Investig Tecnol. abril de 2016;17(2):223-36.

Ragnoli A, De Blasiis MR, Di Benedetto A. Pavement distress detection methods: A review. Vol. 3, Infrastructures. MDPI Multidisciplinary Digital Publishing Institute; 2018. p. 58.

Chen X, Zhang Z, Lambert JR. Field performance evaluation of stone interlayer pavement in Louisiana. Int J Pavement Eng. 14 de septiembre de 2014;15(8):708-17.

Cafiso S, Di Graziano A, Fedele R, Marchetta V, Praticò F. Sensor-based pavement diagnostic using acoustic signature for moduli estimation. Int J Pavement Res Technol. 1 de noviembre de 2020;13(6):573-80.

Goulias DG, Cafiso S, Di Graziano A, Saremi SG, Currao V. Condition Assessment of Bridge Decks through Ground-Penetrating Radar in Bridge Management Systems. J Perform Constr Facil. 5 de octubre de 2020;34(5):04020100.

Wu S, Fang J, Zheng X, Li X. Sample and Structure-Guided Network for Road Crack Detection. IEEE Access. 2019;7:130032-43.

Moghadas Nejad F, Zakeri H. A comparison of multi-resolution methods for detection and isolation of pavement distress. Expert Syst Appl. 1 de marzo de 2011;38(3):2857-72.

Guan H, Li J, Yu Y, Chapman M, Wang C. Automated road information extraction from mobile laser scanning data. IEEE Trans Intell Transp Syst. 1 de febrero de 2015;16(1):194-205.

Wang W, Wang M, Li H, Zhao H, Wang K, He C, et al. Pavement crack image acquisition methods and crack extraction algorithms: A review. Vol. 6, Journal of Traffic and Transportation Engineering (English Edition). Chang’an University; 2019. p. 535-56.

Cubero-Fernandez A, Rodriguez-Lozano FJ, Villatoro R, Olivares J, Palomares JM. Efficient pavement crack detection and classification. J Image Video Proc. diciembre de 2017;2017(1):1-11.

Lopez Droguett E, Tapia J, Yanez C, Boroschek R. Semantic segmentation model for crack images from concrete bridges for mobile devices. Proc Inst Mech Eng Part O J Risk Reliab. 24 de octubre de 2020;

Nair A, Hemalatha R, Sangeetha P, Harish Kumar K, Dinesh Kumar P, Sahith IS, et al. Efficient crack detection and quantification in concrete structures using IoT. Aust J Electr Electron Eng. 2021;18(1):43-57.

Choudhary GK, Dey S. Crack detection in concrete surfaces using image processing, fuzzy logic, and neural networks. En: 2012 IEEE 5th International Conference on Advanced Computational Intelligence, ICACI 2012. 2012. p. 404-11.

Banharnsakun A. Hybrid ABC-ANN for pavement surface distress detection and classification. Int J Mach Learn Cybern. 1 de abril de 2017;8(2):699-710.

Hoang ND, Nguyen QL. A novel method for asphalt pavement crack classification based on image processing and machine learning. Eng Comput. 1 de abril de 2019;35(2):487-98.

Li L, Sun L, Ning G, Tan S. Automatic pavement crack recognition based on BP neural network. Promet - Traffic - Traffico. 2014;26(1):11-22.

Maguire M, Dorafshan S, Thomas R. {SDNET2018}: {A} concrete crack image dataset for machine learning applications. Browse Datasets. mayo de 2018;

Ying L, Salari E. Beamlet Transform-Based Technique for Pavement Crack Detection and Classification. Comput-Aided Civ Infrastruct Eng. 1 de noviembre de 2010;25(8):572-80.

Bruna J, Mallat S. Classification with scattering operators. En: {CVPR} 2011. 2011. p. 1561-6.

Oyallon E, Mallat S, Sifre L. Generic {Deep} {Networks} with {Wavelet} {Scattering}. 2013;

Jingyi Li, Ning Wang, Ying Liu, Yuemei Yang. A {Study} of {Crack} {Detection} {Algorithm}. En: 2015 {Fifth} {International} {Conference} on {Instrumentation} and {Measurement}, {Computer}, {Communication} and {Control} ({IMCCC}). 2015. p. 1184-7.

Dorafshan S, Thomas RJ, Maguire M. Benchmarking {Image} {Processing} {Algorithms} for {Unmanned} {Aerial} {System}-{Assisted} {Crack} {Detection} in {Concrete} {Structures}. Infrastructures. 2019;4(2):19.

Hoang ND, Nguyen QL. Metaheuristic {Optimized} {Edge} {Detection} for {Recognition} of {Concrete} {Wall} {Cracks}: {A} {Comparative} {Study} on the {Performances} of {Roberts}, {Prewitt}, {Canny}, and {Sobel} {Algorithms}. Quaranta G, editor. Adv Civ Eng. 2018;2018:7163580.

Abdel-Qader I, Abudayyeh O, Kelly ME. Analysis of {Edge}-{Detection} {Techniques} for {Crack} {Identification} in {Bridges}. J Comput Civ Eng. 2003;17(4):255-63.

Li B, Zhang P lin, Wang Z jun, Mi S shan, Zhang Y tang. Gear fault detection using multi-scale morphological filters. Measurement. 2011;44(10):2078-89.

Youquan H, Hanxing Q, Jian W, Wei Z, Jianfang X. Studying of road crack image detection method based on the mathematical morphology. En: 2011 4th {International} {Congress} on {Image} and {Signal} {Processing}. 2011. p. 967-9.

Merazi-Meksen T, Boudraa M, Boudraa B. Mathematical morphology for {TOFD} image analysis and automatic crack detection. Ultrasonics. 2014;54(6):1642-8.

Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, et al. Feature extraction and classification for {EEG} signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med. 2015;38(1):139-49.

Mohammed A, al azzo F, Milanova M. Classification of {Alzheimer} {Disease} based on {Normalized} {Hu} {Moment} {Invariants} and {Multiclassifier}. Int J Adv Comput Sci Appl. 2017;8.

Theodoridis S, Koutroumbas K. Feature Generation II. En: Pattern Recognition. Elsevier; 2009. p. 411-79.

Jahanshahi MR, Masri SF. A {Novel} {Crack} {Detection} {Approach} for {Condition} {Assessment} of {Structures}. 2012;388-95.

Kabir S. Imaging-based detection of {AAR} induced map-crack damage in concrete structure. NDT E Int. 2010;43(6):461-9.

Kaseko MS, Ritchie SG. A neural network-based methodology for pavement crack detection and classification. Transp Res Part C Emerg Technol. 1993;1(4):275-91.

Lee BJ, Lee H “David”. Position-{Invariant} {Neural} {Network} for {Digital} {Pavement} {Crack} {Analysis}. Comput-Aided Civ Infrastruct Eng. 2004;19(2):105-18.

1 2 > >>