Contenido principal del artículo


Al aplicar sistemas de inferencia difusos a través de la herramienta GeoFIS en una base de datos del complejo coralino de la isla de San Andrés se estimó un índice de flujo de CO2 que permite conocer el efecto del flujo sobre mar y la influencia de las variables involucradas. Se encontró que seis de las zonas estudiadas tenían un estado de acidificación del mar por cuenta del CO2, mientras todas las demás zonas tenían una leve incorporación del gas. Así mismo, se pudo evidenciar que las variables que poseen influencia significativa sobre la incorporación de CO2 al medio marino son la temperatura superficial del mar y la naturaleza química de este gas, según el analisis de componentes. Por lo cual, los métodos difusos para la determinación de acidificación de los ecosistemas coralinos, permite establecer una aproximación a los efectos que tendría la incorporación paulatina de CO2 al medio marino, además de brindar excelentes ventajas en cuanto a su determinación a partir de información satelital.

Juan Guillermo Popayan Hernandez, 1Universidad Nacional Abierta y a Distancia UNAD

Ingeniero Ambiental, Universidad Nacional de Colombia

Magister en Ingeniería Ambiental, Universidad Nacional de Colombia

Docente Universidad Nacional Abierta y a Distancia UNAD

Orlando Zuñiga Escobar, Universidad del Valle

Físico Universidad del Valle

Magister Tecnologia y desarrollo, Technische Universitat Berlin

Magister en Geofisica, Technische Universitat Berlin

Doctorado Tecnologia Agroambiental, Universidad Politecnica de Madrid

Popayan Hernandez JG, Becerra Moreno D, Zuñiga Escobar O. Estimación del índice de flujo de CO2 en la isla de San Andrés utilizando lógica difusa. inycomp [Internet]. 18 de mayo de 2021 [citado 15 de julio de 2024];23(2):e2039700. Disponible en:

(1) Claesson J, Nycander J. Combined effect of global warming and increased CO2 -concentration on vegetation growth in water-limited conditions. Ecological Modelling. 2013;256:23–30.

(2) Lefevre S. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction. Conservation Physiology. 2016;4:cow009.

(3) Koçak E, Ulucak R, Ulucak ZŞ. The impact of tourism developments on CO2 emissions: An advanced panel data estimation. Tourism Management Perspectives. 2020;33(April 2019):100611.

(4) Intergovernmental Panel on Climate Change. Carbon and Other Biogeochemical Cycles. In: Cambridge University Press, editor. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 465–570.

(5) MacDougall AH, Friedlingstein P. The Origin and Limits of the Near Proportionality between Climate Warming and Cumulative CO2 Emissions. Journal of Climate.2015;28(10):4217–4230.

(6) Rau GH, McLeod EL, Hoegh-Guldberg O. The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change. 2012;2(10):720–724.

(7) Szulejko JE, Kumar P, Deep A, Kim KH. Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor. Atmospheric Pollution Research. 2017;8(1):136–140.

(8) Wong CS, Christian JR, Wong E, Page J, Xie L, et. al. Carbon dioxide in surface seawater of the eastern North Pacific Ocean (Line P), 1973-2005. Deep-Sea Research Part I: Oceanographic Research Papers. 2010;57(5):687–695.

(9) Tambutté E, Venn AA, Holcomb M., Segonds N, Techer N. et. al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nature Communications. 2015;6:7368.

(10) Albright R, Takeshita Y, Koweek DA, Ninokawa A, Wolfe K. et al. Carbon dioxide addition to coral reef waters suppresses net community calcification. Nature. 2018;555(7697):516–519.

(11) Taylor E, Baine M, Killmer A, Howard M. Seafluxer marine protected area: Governance for sustainable development. Marine Policy. 2013;41:57–64.

(12) Gavio B, Palmer-Cantillo S, Mancera JE. Historical analysis (2000-2005) of the coastal water quality in San Andrés Island, SeaFluxer Biosphere Reserve, Caribbean Colombia. Marine Pollution Bulletin. 2010;60(7):1018–1030.

(13) Albis-Salas MR, Gavio B. Notes on marine algae in the International Biosphere Reserve Seaflower, Caribbean Colombian I: new records of macroalgal epiphytes on the seagrass Thalassia testudinum. Botanica Marina. 2011;54(6): 537–543.

(14) Castaño-Isaza J, Newball R, Roach B, Lau WWY. Valuing beaches to develop payment for ecosystem services schemes in Colombia’s Seafluxer marine protected area. Ecosystem Services. 2015;11:22–31.

(15) Guillaume S, Charnomordic B. Learning interpretable fuzzy inference systems with FisPro. Information Sciences. 2011;181(20):4409–4427.

(16) Dong F, Zhu X, Qian W, Wang P, Wang J. Combined effects of CO2-driven ocean acidification and Cd stress in the marine environment: Enhanced tolerance of Phaeodactylum tricornutum to Cd exposure. Marine Pollution Bulletin. 2020;150(November 2019): 110594.

(17) Orselli IBM, Goyet C, Kerr R, de Azevedo JLL, Araujo M. et al. The effect of Agulhas eddies on absorption and transport of anthropogenic carbon in the South Atlantic Ocean. Climate. 2019;7(6): 84.

(18) Padin XA, Castro CG, Ríos AF, Pérez FF. Oceanic CO2 uptake and biogeochemical variability during the formation of the Eastern North Atlantic Central water under two contrasting NAO scenarios. Journal of Marine Systems. 2011;84(3–4), 96–105.

(19) D’Ortenzio F, Antoine D, Marullo S. Satellite-driven modeling of the upper ocean mixed layer and air-sea CO2 flux in the Mediterranean Sea. Deep-Sea Research Part I: Oceanographic Research Papers. 2008;55(4):405–434.

(20) Else BGT, Yackel JJ, Papakyriakou TN. Application of satellite remote sensing techniques for estimating air-sea CO2 fluxes in Hudson Bay, Canada during the ice-free season. Remote Sensing of Environment. 2008;112(9):3550–3562.

(21) Hattam C, Atkins JP, Beaumont N, Börger T, Böhnke-Henrichs A. et al. Marine ecosystem services: Linking indicators to their classification. Ecological Indicators, 49:61–75.

(22) Takahashi T, Sutherland SC, Chipman DW, Goddard JG, Ho C. et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry. 2014;164:95–125.

(23) Soloviev A, Donelan M, Graber H, Haus B, Schlüssel P. An approach to estimation of near-surface turbulence and CO2 transfer velocity from remote sensing data. Journal of Marine Systems. 2007;66(1–4): 182–194.

(24) Woods S, Minnett PJ, Gentemann CL, Bogucki D. Influence of the oceanic cool skin layer on global air-sea CO2 flux estimates. Remote Sensing of Environment. 2014;145:15–24.

(25) Yasunaka S, Murata A, Watanabe E, Chierici M, Fransson A. et al. Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability. Polar Science;201610(3):323–334.

(26) Chien H, Zhong YZ, Yang KH, Cheng HY. Diurnal variability of CO2 flux at coastal zone of Taiwan based on eddy covariance observation. Continental Shelf Research. 2018;162(April):27–38.

(27) Wanninkhof R, Barbero L, Byrne R, Cai WJ, Huang WJ. et al. Ocean acidification along the Gulf Coast and East Coast of the USA. Continental Shelf Research. 2015;98:54–71.

Recibido 2020-05-13
Aceptado 2020-11-10
Publicado 2021-05-18