Contenido principal del artículo

Autores

El estudio evalúa la generación y capacidad de recuperación de metano en el Relleno Sanitario de Villavicencio, Colombia, mediante el modelo LandGEM. En donde se observa un aumento significativo en la generación de metano, pasando de alrededor de 1,5 millones de metros cúbicos en 2010 a más de 8,5 millones en 2020, lo que indica una creciente urgencia por implementar medidas de mitigación efectivas. Se estimó que, para el año 2042, la producción de energía eléctrica del metano podría ser de 248.067 kW/día, capaz de abastecer a unos 43.705 hogares mensualmente. Asimismo, se generaría energía térmica de 468.572 kWh/día, útil para procesos industriales. Se plantearon escenarios de gestión, donde, por ejemplo, la optimización operacional podría aumentar la producción eléctrica a 342.333 kW/día, beneficiando a más de 60.000 hogares mensualmente. Las conclusiones resaltan la correlación directa entre la cantidad de residuos y la generación de metano, y el significativo potencial de convertir estas emisiones en energía, apuntando hacia la autosuficiencia y sostenibilidad energética regional. El aprovechamiento del metano representa una alternativa valiosa frente a la dependencia de combustibles fósiles y para el desarrollo de una economía circular.

Luisa Fernanda Ramírez Ríos, Universidad Francisco de Paula Santander, Facultad de Ciencias Agrarias y del Ambiente, San José de Cúcuta, Norte de Santander, Colombia.

Ingeniera Ambiental con maestria en Ingeniria Ambiental de la Universidad Nacional de Colombia. Profesora de planta de tiempo completo en el programa de Ingenieria Ambiental de la Universidad de los Llanos.

Dorance Becerra Moreno, 2Universidad de los Llanos, Escuela de Ingeniería, Facultad de Ciencias Básicas e Ingeniería, Villavicencio, Meta, Colombia.

Ingeniero Sanitario, con Maestria en Ingenieria Sanitaria y Ambiental y doctorando en Ingenieria Sanitaria y Ambiental de la Universidad del Valle. Profesor de planta tiempo completo del programa de Ingenieria Ambiental de la Universidad Francisco de Paula Santander.

Judith Yamile Ortega Contreras, Universidad de los Llanos, Escuela de Ingeniería, Facultad de Ciencias Básicas e Ingeniería, Villavicencio, Meta, Colombia.

Licenciada en Biología y Química, especialista en Ingenieria de Gestión Ambiental de la Universidad Francisco de Paula Santander, magister en Ingeniería Ambiental de la Universidad de Pamplona. Profesor de tiempo completo del programa de Ingeniería Ambiental de la Universidad Francisco de Paula Santander.

1.
Ramírez Ríos LF, Becerra Moreno D, Ortega Contreras JY. Potencial de aprovechamiento del gas metano generado en el relleno sanitario del municipio de Villavicencio, Colombia. inycomp [Internet]. 24 de julio de 2024 [citado 31 de agosto de 2024];26(2):e-21314019. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/14019

Sales Silva ST, Barros RM, Silva Dos Santos IF, Maria De Cassia Crispim A, Tiago Filho GL, Silva Lora EE. Technical and economic evaluation of using biomethane from sanitary landfills for supplying vehicles in the Southeastern region of Brazil. Renew Energy. 2022 Aug;196:1142–57. DOI: https://doi.org/10.1016/j.renene.2022.07.020

Ni G. Mitigating greenhouse gas emissions from waste treatment through microbiological innovation. Microbiol Aust. 2023 Mar 1;44(1):22–6. DOI: https://doi.org/10.1071/MA23006

Yumnam G, Gyanendra Y, Singh CI. A systematic bibliometric review of the global research dynamics of United Nations Sustainable Development Goals 2030. Sustain Futur. 2024 Jun;7:100192. DOI: https://doi.org/10.1016/j.sftr.2024.100192

Li Y, Zhang S, Liu C. Research on Greenhouse Gas Emission Characteristics and Emission Mitigation Potential of Municipal Solid Waste Treatment in Beijing. Sustainability. 2022 Jul 8;14(14):8398. DOI: https://doi.org/10.3390/su14148398

Patel B, Patel A, Patel P. Waste to energy: a decision-making process for technology selection through characterization of waste, considering energy and emission in the city of Ahmedabad, India. J Mater Cycles Waste Manag. 2023 Mar;25(2):1227–38. DOI: https://doi.org/10.1007/s10163-023-01610-1

Pheakdey DV, Noudeng V, Xuan TD. Landfill Biogas Recovery and Its Contribution to Greenhouse Gas Mitigation. Energies. 2023 Jun 13;16(12):4689. DOI: https://doi.org/10.3390/en16124689

Temireyeva A, Zhunussova K, Aidabulov M, Venetis C, Sarbassov Y, Shah D. Greenhouse Gas Emissions-Based Development and Characterization of Optimal Scenarios for Municipal Solid and Sewage Sludge Waste Management in Astana City. Sustainability. 2022 Nov 28;14(23):15850. DOI: https://doi.org/10.3390/su142315850

Abu-Qdais HA, Al-Ghazawi Z, Awawdeh A. Assessment of Greenhouse Gas Emissions and Energetic Potential from Solid Waste Landfills in Jordan: A Comparative Modelling Analysis. Water. 2022 Dec 30;15(1):155. DOI: https://doi.org/10.3390/w15010155

Kumar C, Mishra P, Singh N, Pathak AK. Landfill Emissions and Their Impact on the Environment. Int J Eng Res. 9(08).

Amy Alexander, Burklin C, Singleton A. Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. Washington, DC: U.S. Environmental Protection Agency; 2005. 55 p.

U.S. Environmental Protection Agency. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. Washington, DC: U.S. Environmental Protection Agency; 2008. 249 p.

Chandra S, Ganguly R. Assessment of landfill gases by LandGEM and energy recovery potential from municipal solid waste of Kanpur city, India. Heliyon. 2023 Apr;9(4):e15187. DOI: https://doi.org/10.1016/j.heliyon.2023.e15187

Fallahizadeh S, Rahmatinia M, Mohammadi Z, Vaezzadeh M, Tajamiri A, Soleimani H. Estimation of methane gas by LandGEM model from Yasuj municipal solid waste landfill, Iran. MethodsX. 2019;6:391–8. DOI: https://doi.org/10.1016/j.mex.2019.02.013

Wangyao K. Methane Generation Rate Constant in Tropical Landfill. 2010;

Pillai J, Riverol C. Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. Sustain Energy Technol Assess. 2018 Oct;29:139–46. DOI: https://doi.org/10.1016/j.seta.2018.08.004

Andrade Morales ÁA, Restrepo Victoria ÁH, Tibaquirá JE. Estimación de biogás de relleno sanitario, caso de estudio: Colombia. Entre Cienc E Ing. 2018 Mar 3;12(23):40–7. DOI: https://doi.org/10.31908/19098367.3701

Rodríguez Silveira AR, Nadaleti WC, Przybyla G, Belli Filho P. Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy. Renew Energy. 2019 Apr;134:1003–16.

U.S. Environmental Protection Agency. Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills [Internet]. 2008 [cited 2024 Jul 22]. Available from: https://nepis.epa.gov/Exe/tiff2png.cgi/P1002UVK.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX%20DATA%5C06THRU10%5CTIFF%5C00000319%5CP1002UVK.TIF

Scarlat N, Motola V, Dallemand JF, Monforti-Ferrario F, Mofor L. Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renew Sustain Energy Rev. 2015 Oct;50:1269–86. DOI: https://doi.org/10.1016/j.rser.2015.05.067

Ramprasad C, Teja HC, Gowtham V, Vikas V. Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model. MethodsX. 2022;9:101869.

Ahmed MM, Hossan MN, Masud MH. Prospect of waste-to-energy technologies in selected regions of lower and lower-middle-income countries of the world. J Clean Prod. 2024 Apr;450:142006. DOI: https://doi.org/10.1016/j.jclepro.2024.142006

Choudhary A, Kumar A, Kumar S, Verma V. Energy possibilities and future strategies for municipal solid waste in Himachal Pradesh. Mater Today Proc. 2022;48:1455–9. DOI: https://doi.org/10.1016/j.matpr.2021.09.224

Sun W, Wang X, DeCarolis JF, Barlaz MA. Evaluation of optimal model parameters for prediction of methane generation from selected U.S. landfills. Waste Manag. 2019 May;91:120–7. DOI: https://doi.org/10.1016/j.wasman.2019.05.004

Anshassi M, Smallwood T, Townsend TG. Life cycle GHG emissions of MSW landfilling versus Incineration: Expected outcomes based on US landfill gas collection regulations. Waste Manag. 2022 Apr;142:44–54. DOI: https://doi.org/10.1016/j.wasman.2022.01.040

Ramprasad C, Teja HC, Gowtham V, Vikas V. Quantification of landfill gas emissions and energy production potential in Tirupati Municipal solid waste disposal site by LandGEM mathematical model. MethodsX. 2022;9:101869. DOI: https://doi.org/10.1016/j.mex.2022.101869

Rafew SM, Rafizul IM. Application of system dynamics for municipal solid waste to electric energy generation potential of Khulna city in Bangladesh. Energy Rep. 2023 Dec;9:4085–110. DOI: https://doi.org/10.1016/j.egyr.2023.02.087

Wang D, Yuan W, Xie Y, Fei X, Ren F, Wei Y, et al. Simulating CH4 emissions from MSW landfills in China from 2003 to 2042 using IPCC and LandGEM models. Heliyon. 2023 Dec;9(12):e22943.

Luís Padilha J, Luiz Amarante Mesquita A. Waste-to-energy effect in municipal solid waste treatment for small cities in Brazil. Energy Convers Manag. 2022 Aug;265:115743. DOI: https://doi.org/10.1016/j.enconman.2022.115743

Paddy EY, Namondo BV, Fopah-Lele A, Foba-Tendo J, Ibrahim FS, Tanyi E. Assessment of the energy potential of municipal solid waste: A case study of Mussaka dumpsite, Buea Cameroon. Bioresour Technol Rep. 2024 Feb;25:101784. DOI: https://doi.org/10.1016/j.biteb.2024.101784

Bouyakhsass R, Souabi S, Bouaouda S, Taleb A, Kurniawan TA, Liang X, et al. Adding value to unused landfill gas for renewable energy on-site at Oum Azza landfill (Morocco): Environmental feasibility and cost-effectiveness. Trends Food Sci Technol. 2023 Dec;142:104168. DOI: https://doi.org/10.1016/j.tifs.2023.104168

Wang D, Yuan W, Xie Y, Fei X, Ren F, Wei Y, et al. Simulating CH4 emissions from MSW landfills in China from 2003 to 2042 using IPCC and LandGEM models. Heliyon. 2023 Dec;9(12):e22943. DOI: https://doi.org/10.1016/j.heliyon.2023.e22943

Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Definición del nivel de complejidad y evaluación de la población, la dotación y la demanda de agua. Bogotá D.C.: PANAMERICANA FORMAS EIMPRESOS S.A.; 2003. 67 p.

Superintendencia Delegada de Acueducto, Alcantarillado y Aseo. Informe Ejecutivo de Gestión Bioagricola del Llano S.A Empresa de Servicios Públicos Análisis 2012. 2013.

Superintendencia de Servicios Públicos Domiciliarios. Informe Nacional de Disposición Final de Residuos Sólidos 2020. Superintendencia de Servicios Públicos Domiciliarios; 2021.

Rodrigues Silveira AR, Nadaleti WC, Przybyla G, Belli Filho P. Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy. Renew Energy. 2019 Apr;134:1003–16. DOI: https://doi.org/10.1016/j.renene.2018.11.063

U.S. Environmental Protection Agency. Catalog of CHP technologies [Internet]. 2017 [cited 2024 Jul 2]. Available from: https://www.epa.gov/sites/default/files/2015-07/documents/catalog_of_chp_technologies.pdf

Instituto de Hidrología, Meteorología y Estudios Ambientales. Consulta y Descarga de Datos Hidrometeorológicos [Internet]. [cited 2024 Apr 25]. Available from: http://dhime.ideam.gov.co/atencionciudadano/

Niño Torres ÁM, Trujillo González JM, Niño Torres AP, Corporación Universitaria Minuto de Dios, Instituto de Ciencias Ambientales de la Orinoquia Colombiana (ICAOC), Universidad de los Llanos. Gestión de residuos sólidos domiciliarios en la ciudad de Villavicencio. Una mirada desde los grupos de interés: empresa, estado y comunidad. Luna Azul. 2017 Apr 13;(44):177–87. DOI: https://doi.org/10.17151/luaz.2017.44.11

DANE - Censo general 2005 [Internet]. [cited 2024 Apr 25]. Available from: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-general-2005-1

DANE - Censo Nacional de Población y Vivienda 2018 [Internet]. [cited 2024 Apr 25]. Available from: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018

Ministerio de Vivienda, Ciudad y Territorio. Resolución CRA 833 de 2018. 2018.

Rafey A, Siddiqui FZ. Modelling and simulation of landfill methane model. Clean Energy Syst. 2023 Aug;5:100076. DOI: https://doi.org/10.1016/j.cles.2023.100076

Skytt T, Nielsen SN, Jonsson BG. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability – A case study of Jämtland, Sweden. Ecol Indic. 2020 Mar;110:105831. DOI: https://doi.org/10.1016/j.ecolind.2019.105831

Da Silva NF, Schoeler GP, Lourenço VA, De Souza PL, Caballero CB, Salamoni RH, et al. First order models to estimate methane generation in landfill: A case study in south Brazil. J Environ Chem Eng. 2020 Aug;8(4):104053. DOI: https://doi.org/10.1016/j.jece.2020.104053

Ghosh P, Shah G, Chandra R, Sahota S, Kumar H, Vijay VK, et al. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresour Technol. 2019 Jan;272:611–5. DOI: https://doi.org/10.1016/j.biortech.2018.10.069

Karanjekar RV, Bhatt A, Altouqui S, Jangikhatoonabad N, Durai V, Sattler ML, et al. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model. Waste Manag. 2015 Dec;46:389–98. DOI: https://doi.org/10.1016/j.wasman.2015.07.030

Alcaldía de Villavicencio. Decreto No. 1000-24/ 203 de 2020. Alcaldía de Villavicencio; 17 de abril.

Alcaldía de Villavicencio. Alcaldía de Villavicencio. [cited 2024 Apr 27]. Economía. Available from: http://historico.villavicencio.gov.co/MiMunicipio/Paginas/Economia.aspx

Kale C, Gökçek M. A techno-economic assessment of landfill gas emissions and energy recovery potential of different landfill areas in Turkey. J Clean Prod. 2020 Dec;275:122946. DOI: https://doi.org/10.1016/j.jclepro.2020.122946

Torres Júnior P, Moreira CAL. O programa de incentivo às energias renováveis no Brasil (PROINFA) e a sua relação com a sustentabilidade: um estudo sobre a política energética brasileira sob a ótica neoliberal neoextrativista. Braz J Dev. 2020;6(3):15466–78. DOI: https://doi.org/10.34117/bjdv6n3-427

Parsons B, Cochran J, Watson A, Katz J, Bracho R. Renewable Electricity Grid Integration Roadmap for Mexico. Supplement to the IEA Expert Group Report on Recommended Practices for Wind Integration Studies [Internet]. 2015 Aug [cited 2024 Jul 22] p. NREL/TP--7A40-63136, 1215045. Report No.: NREL/TP--7A40-63136, 1215045. Available from: http://www.osti.gov/servlets/purl/1215045/

Ley 1715 de 2014. Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional. [Internet]. D.O 49150. Available from: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353

Unidad de Planeación Minero-Energética. Plan Energético Nacional 2020-2050. La transformación energética que habilita el desarrollo sostenible. [Internet]. [cited 2024 Jul 22]. Available from: https://www1.upme.gov.co/DemandayEficiencia/Documents/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf

Resolución 240 de 2016 [Comisión de Regulación de Energía y Gas]. Por la cual se adoptan las normas aplicables al servicio público domiciliario de gas combustible con biogás y biometano. 6 de diciembre de 2016. [Internet]. Available from: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_creg_0240_2016.htm

Ley 2128 de 2021. Por medio de la cual se promueve el abastecimiento, continuidad, confiabilidad y cobertura del gas combustible en el país. [Internet]. D.O. 51.756. Available from: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=168087

Ley 2099 de 2021. Por medio de la cual se dictan disposiciones para la transición energética, la dinamización del mercado energético, la reactivación económica del país y se dictan otras disposiciones. [Internet]. D.O. No. 51.731. Available from: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=166326

Barnes Q. El boom de la basura argentina: dos casos exitosos de Transferencia de Tecnología en el mecanismo de desarrollo limpio. Encruc Am. 2015 Sep 1;7(1):25. DOI: https://doi.org/10.53689/ea.v7i1.58

De Souza Ribeiro N, Barros RM, Dos Santos IFS, Filho GLT, Da Silva SPG. Electric energy generation from biogas derived from municipal solid waste using two systems: landfills and anaerobic digesters in the states of São Paulo and Minas Gerais, Brazil. Sustain Energy Technol Assess. 2021 Dec;48:101552. DOI: https://doi.org/10.1016/j.seta.2021.101552

Recibido 2024-04-30
Aceptado 2024-07-24
Publicado 2024-07-24

Datos de los fondos