Main Article Content

Authors

The estimation of the green and blue water footprint in the production of organic sugarcane (Saccharum officinarum) was obtained for a planting area of 621.5 hectares in the Amaime river basin in Valle del Cauca, Colombia. The study represents the first approximation in the quantification of the theoretical amount of water required by growers to produce sugarcane under organic planting conditions, based on the methodological guidelines proposed in the Water Footprint Evaluation Manual of the authors Arjen and Hoekstra et al, (2011), and the computer program CROPWAT 8.0 of the Food and Agriculture Organization of the United Nations (FAO). The results for the green water footprint yielded an indicator of 117.07 m3/t, and 37.44 m3/t for the blue water footprint, for a total water footprint of 154.51 m3/t. The obtained data were analyzed comparatively with results from the literature about the traditional cultivation of sugarcane in Colombia, and international references for the same crop, so that the cultivation of organic sugarcane could present competitive advantages in environmental terms, associated with the use of water resources and context conditions. Moreover, it is necessary to deepen the analysis of the gray water footprint and analyses that involve cultural, social, scientific, economic, biophysical, and political aspects that lead to the integrality of the indicator.

Dorance Becerra Moreno, Universidad Francisco de Paula Santander, Departamento de Ciencias del Medio Ambiente, Programa de Ingeniería Ambiental, San José de Cúcuta, Colombia

https://orcid.org/0000-0001-8556-9914

1.
Ramirez Rios LF, Becerra Moreno D, Mora Bejarano CH. Green and blue water footprint of organic sugarcane production in the central area of Cauca Valley. inycomp [Internet]. 2022 May 26 [cited 2025 Jan. 23];24(02):13. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11264

(1) UNESCO. Informe de las Naciones Unidas sobre los Recursos Hidricos en el Mundo: Agua para un mundo sostenible. [PDF]. WWAP. Perusa; (Italia); 2015. 8 p.

(2) IDEAM, INVEMAR IIAP e IAvH. Informe del Estado del Ambiente y de los Recursos Naturales Renovables 2016 [Internet]. Bogotá, D.C.; 2017 [cited 2018 Nov 17]. Available from: http://documentacion.ideam.gov.co/open biblio/bvirtual/023834/INFORME_E.A_ 2016.pdf

(3) WWDR. Agua para un mundo sostenible. [PDF]. Resumen ejecutivo. Perugia (Italia); 2015. 12 p.

(4) FAO. El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. Roma [Internet]. 2011;50. Available from: http://www.fao.org/docrep/015/i1688s/i1 688s00.pdf

(5) FAO. Uso del modelo AquaCrop para estimar rendimientos para el cultivo de caña de azúcar en el departamento del Valle del Cauca. [Internet] 2013; 1–66 p. Available from: https://coin.fao.org/coinstatic/cms/media/19/13886900624180/ca rtilla_caa_de_azucar.pdf

(6) Madero-Morales E, Ramírez-Alzate JA, Albán Á, Escobar BY, García LF, PeñaArtunduaga ME. Compactación de suelos cultivados con caña de azúcar en la zona sur del Valle del Cauca, Colombia. Acta Agronómica [Internet]. 2011; 244–51 p. Available from: http://www.scielo.org.co/scielo.php?scri pt=sci_arttext&pid=S0120- 28122011000300005&lang=pt

(7) Pérez MA, Peña MR, Alvarez P. Agroindustria cañera y uso del agua: análisis crítico en el contexto de la política de agrocombustibles en Colombia. Ambiente y Sociedad [Internet]. 2011;14(2):153–78. Available from: http://www.scielo.br/scielo.php?script=s ci_arttext&pid=S1414- 753X2011000200011&lng=es&tlng=es

(8) Restrepo S, Bedoya D. El uso del agua en el cultivo de caña de azucar. Una mirada desde la huella hídrica. Santiago de Cali [Internet]. Universidad del Valle. 2015; 165 p. Available from: https://bibliotecadigital.univalle.edu.co/b itstream/handle/10893/13091/CB0519672.pdf?sequence=1

(9) IDEAM. Reporte de Avance del Estudio Nacional del Agua ENA 2018 [Internet]. Bogotá, D.C.; 2018 [cited 2018 Nov 17]. Available from: http://documentacion.ideam.gov.co/open biblio/bvirtual/023846/Cartilla_ENA_ 2018.pdf

(10) Giorelli C, Huerta R. Análisis económico de la Huella Hídrica del Banano Orgánico en Sullana para los años 2000 al 2014 [Internet]. Universidad Nacional Agraria La Molina. Perú. 2018. 50 p.

(11) FiBL & IFOAM Organics International. The world of organic agriculture. Statics and Emergin Trends 2021. [PDF]. Bonn (Alemania); 2021. 340 p.

(12) Hoekstra AY. Sustainable, efficient, and equitable water use: the three pillars under wise freshwater allocation. Wiley Interdiscip Rev Water [Internet]. 2014;1(1):31–40. Available from: http://doi.wiley.com/10.1002/wat2.1000

(13) Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. The Water Footprint Assessment Manual: setting the global standard. [PDF]. London. 2011. 364 p.

(14) Jorrat M del M, Araujo PZ, Mele FD. Sugarcane water footprint in the province of Tucumán, Argentina. Comparison between different management practices. Journal of Cleanner Production. [Internet]. 2018;188:521–9. Available from: https://doi.org/10.1016/j.jclepro.2018.03 .242

(15) Schyns JF, Hoekstra AY. The added value of Water Footprint Assessment for national water policy: A case study for Morocco. PLoS One. [PDF]. 2014;9(6).

(16) Gheewala SH, Silalertruksa T, Nilsalab P, Mungkung R, Perret SR, Chaiyawannakarn N. Water footprint and impact of water consumption for food, feed, fuel crops production in Thailand. Water (Switzerland). [PDF]. 2014;6(6):1698–718.

(17) Mekonnen MM, Pahlow M, Aldaya MM, Zarate E, Hoekstra AY. Sustainability, efficiency and equitability of water consumption and pollution in latin America and the Caribbean. Sustain. [PDF]. 2015;7(2):2086–112.

(18) Pahlow M. SJ& FG. Water Footprint Assessment to inform Water Management and Policy Making in South Africa. Water SA. [PDF]. 2015;41(3):300–12.

(19) Silva V de PR da, Albuquerque MF de, Araújo LE de, Campos JHB da C, Garcéz SLA, Almeida RSR. Mediciones y modelización de la huella hídrica de la caña de azúcar cultivada en el Estado de Paraíba. Rev Bras Eng Agrícola e Ambient. [PDF]. 2015;19(6):521–6.

(20) Barbosa EAA, Matsura EE, dos Santos LNS, Gonçalves IZ, Nazário AA, Feitosa DRC. Water footprint of sugarcane irrigated with treated sewage and freshwater under subsurface drip irrigation, in Southeast Brazil. J Clean Prod. [PDF]. 2017;153:448–56.

(21) Zhuo L, Mekonnen MM, Hoekstra AY. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade. Environ Int. [PDF]. 2016;94:211–23.

(22) Zhang Y, Zhang J, Tang G, Chen M, Wang L. Virtual water flows in the international trade of agricultural products of China. Sci Total Environ. [PDF]. 2016;557–558:1–11.

(23) Jorrat M del M, Araujo PZ, Mele FD. Sugarcane water footprint in the province of Tucumán, Argentina. Comparison between different management practices. Journal of Cleaner Production. [PDF]. 2018;188:521–9.

(24) Rodriguez CI, De Ruiz Galarreta VA, Kruse EE. Analysis of water footprint of potato production in the pampean region of Argentina. Journal of Cleaner Production. [PDF]. 2015;90:91–6.

(25) Arevalo D, Lozano JG, Sabogal J. Estudio nacional de Huella Hídrica Colombia Sector Agrícola. Revista Sostenibilidad, Tecnología y Humanismo. [PDF]. 2011;7:103–26.

(26) Builes-Cedula ED. Cuantificación y análisis de sostenibilidad ambiental de la huella hídrica agrícola y pecuaria de la cuenca del río Porce. [PDF]. Universidad Nacional de Colombia; 2013. 90 p.

(27) Arévalo D. Una mirada a la agricultura de Colombia desde su Huella Hídrica. Wwf Colombia. [PDF]. Cali (Colombia); 2012. 48 p.

(28) IDEAM. Estudio Nacional del Agua: Información para la toma de decisiones. [PDF]. Vol. 3. 2015. 24 p.

(29) Vega DI, Redondo JM, Olivar G, Vega I, Olivar JM, De GT. Tendencias del Consumo de Agua en la Produccion de Bioetanol en Colombia. [PDF]. XXI(c):93–106 p.

(30) Allen G. R, Pereira LS, Raes D, Smith M. Evapotranspiración del cultivo. FAO. Estudios FAO Riego y Drenaje 56. [PDF]. 2006;297 p.

(31) Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. The Water Footprint Assessment Manual: setting the global standard. [PDF]. London. 2011. 364 p

(32) R Core Team. R: The R Project for Statistical Computing [Internet]. 2018 [cited 2018 Oct 7]. Available from: https://www.r-project.org/

(33) RStudio Team. RStudio: Integrated Development Environment for R [Internet]. 2016 [cited 2018 Oct 7]. Available from: https://www.rstudio.com/

(34) Wickham, H; Bryan J. Read Excel Files [R package readxl version 1.2.0] [Internet]. Comprehensive R Archive Network (CRAN); 2017 [cited 2018 Oct 7]. Available from: https://cran.rproject.org/web/packages/readxl/index.h tml

(35) Morábito J, Salatino S, Hernández R, Schilardi C, Álvarez A, Palmieri PR. Distribución espacial de la evapotranspiración del cultivo de referencia y de la precipitación efectiva para las Provincias del centro-noreste de Argentina. Revista de la Facultad de Ciencias Agrarias. [PDF]. 2015;47(1):109–25.

(36) Paz S, et al. Escenario de demanda hídrica agrícola para la optimización del riego de los pequeños productores de la zona plana de la cuenca del río Guabas . Informador técnico (Colombia). [PDF]. Ed. 76. 2012; 5–12 p.

(37) Corporación Autónoma Regional del Valle del Cauca CVC. Guia Balance oferta - demanda de agua. [PDF]. 2015. p. 39.

(38) IDEA; CVC. PERFIL AMBIENTAL URBANO MUNICIPIO DE PALMIRA. 2008;55. [Internet]. Available from: http://www.idea.palmira.unal.edu.co/pag inas/proyectos/paginas/perfil_comuna5/ perfil_amb.pdf.

(39) Mesa M, Rodriguez D. Cálculo comparativo de la huella hídrica como criterio de sostenibilidad para el sistema productivo de caña panelera [PDF]. Universidad de la Salle; Bogotá, D.C. 2016. 140 p.

(40) Hernández G. Modelamiento Ecohidrológico de la Humedad del Suelo en el Valle del Río Cauca.[PDF]. Universidad Nacional de Colombia; 2010. 242 p.

(41) Torres J (Cenicaña). Riegos [Internet]. El cultivo de la caña en la zona azucarera de Colombia. Cali; 1995. Available from: http://books.google.com/books?id=HZw 0AQAAIAAJ&pgis=1

(42) Hoekstra AY, Mekonnen MM. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Volume 1 : Main Report. Value Water Res Rep Ser No 47 [Internet]. 2010;1(16):80. Available from: http://wfn.projectplatforms.com/Reports/Report47- WaterFootprintCrops-Vol1.pdf

(43) Gerbens-Leenes W, Hoekstra AY. The water footprint of sweeteners and bioethanol. Environ Int [Internet]. 2012;40(1):202–11. Available from: http://dx.doi.org/10.1016/j.envint.2011.0 6.006

(44) Renderos R. Huella Hídrica del Cultivo de Caña de Azúcar. ResearchGate [PDF]. 2016;(Julio):8 p.

(45) Scarpare FV, Hernandes TAD, RuizCorrea ST, Kolln OT, Gava GJDC, Dos Santos LNS, et al. Sugarcane water footprint under different management practices in Brazil: Tieté/Jacaré watershed assessment.Journal of Cleaner Production. [PDF]. 2016;112:4576–4584 p

(46) Kongboon R, Sampattagul S. The water footprint of sugarcane and cassava in northern Thailand. Procedia - Social and Behavioral Scienses [Internet]. 2012;40:451–460. Available from: http://linkinghub.elsevier.com/retrieve/pi i/S1877042812006829

(47) Espinel G CF, Hector J MC, Espinoza Perez D. Cadena de Cultivos Ecologicos en Colombia. ResearchGate. [PDF]. 2005;(68):30 p.

(48) Corporación Autónoma Regional del Valle del Cauca CVC. Plan ordenacion y manejo de la cuenca hidrografica del rio amaime. [PDF]. 2010. 305 p

Received 2021-05-11
Accepted 2021-10-28
Published 2022-05-26