Main Article Content

Authors

Reservoirs emit greenhouse gases (GHGs) as a result of flooded organic matter biodegradation after the filling process or the organic matter that enters through the tributaries. Hence, it is important to take an inventory of greenhouse gas emissions in the reservoirs, so that, measures can be established to minimize the impact of global warming. These gases are produced by anaerobic or aerobic processes occurring in reservoirs. In this work, the formation rates of carbon dioxide (CO2) and methane (CH4) in anaerobic reactors in batch were evaluated at laboratory scale, using water and plant material from the Topocoro reservoir, located in the department of Santander-Colombia. The results showed degradation rates of
0.5843 mg O2/L.d and 0.1269 mg O2/L.d for dissolved and particulate organic matter respectively. Furthermore, gas emissions after completing the degradation time were 0.6269 mg CH4/L and 31.2443 mg CO2/L. It was implemented a linear model to predict the formation of CO2 and an exponential model to predict the formation of CH4 with determination coefficients of 0.9999 and 0.9928 respectively.

1.
Ruiz-Vasquez M, Rodríguez DC, Chica EL, Peñuela GA. Calibration of two mathematical models at laboratory scale for predicting the generation of methane and carbon dioxide at the entrance point of the Chucurí river to the Topocoro Reservoir, Colombia. inycomp [Internet]. 2019 Jan. 30 [cited 2024 Nov. 22];21(1):11-22. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/7651

Duque EA, González JD, Restrepo JC. De-veloping sustainable infrastructure for small hydro power plants through clean development mechanisms in Colombia. Procedia Engineering. 2016;145: 224-233.

Dos Santos MA, Damazio JM, Rogerio JP, Amorim MA, Medeiros AM, Abreu JLS, et al. Estimates of GHG emissions by hydroelectric reservoirs: The Brazilian case. Energy.2017; 133: 99-107.

Guérin F, Deshmukh C, Labat D, Pighini S, Vongkhamsao A, Guédant P, et al. Effect of spo-radic destratification, seasonal overturn, and artificial mixing on CH4 emissions from a sub-tropical hydroelectric reservoir. Biogeosciences. 2016;13(12): 3647-3663.

Deshmukh C, Guérin F, Labat D, Pighini S, Vongkhamsao A, Guédant P, et al. Low methane (CH4) emissions downstream of a monomictic sub-tropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences. 2016;13(6): 1919-1932.

Kemenes A, Forsberg BR, Melack JM. Downstream emissions of CH4 and CO2 from hydroelectric reservoirs (Tucuruí, Samuel, and Curuá-Una) in the Amazon basin. Inland Wa-ters. 2016;6(3): 295-302.

Fearnside PM. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ-mental Research Letters. 2016;11(1): 011002.

Lessa ACR, dos Santos MA, Maddock JEL, Dos Santos C. Emissions of greenhouse gases in terres-trial areas pre-existing to hydroelectric plant reser-voirs in the Amazon: The case of Belo Monte hydro-electric plant. Renewable and Sustainable Energy Reviews. 2015;51: 1728-1736.

Louis V, Kelly C, Duchemin E, Rudd J, Rosen-berg D. Reservoir surfaces as sources of green-house gases to the atmosphere: A global estimate. Bioscience. 2000; 50 (9): 766-775.

Steinhurst W, Knight P, Schultz M. Hydropow-er greenhouse gas emissions. Conservation Law Foundation. 2012; 24:6.

Bastviken D, Cole J, Pace M, Tranvik L. Methane emissions from lakes: Dependence of lake charac-teristics, two regional assessments, and a global es-timate. Global biogeochemical cycles. 2004;18(4).

Bartlett K. B, Crill PM, Sebacher DI, Harriss RC, Wilson JO, Melack JM. Methane flux from the cen-tral Amazonian floodplain. Journal of Geophysical Research: Atmospheres. 1988;93(D2): 1571-1582.

Ingeniería y Competitividad, Volumen 21, No. 1, p. 11 - 22 (2019).

Prairie YT, Alm J, Beaulieu J, Barros N, Battin T, Cole J, et al. Greenhouse gas emissions from fresh-water reservoirs: what does the atmosphere see? Eco-systems. 2018;21(5): 1058-1071.

Deemer BR, Harrison JA, Li S, Beaulieu JJ, Del Sontro T, Barros N, et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthe-sis. BioScience. 2016;66(11): 949-964.

Dommain R, Frolking S, Jeltsch-Thömmes A, Joos F, Couwenberg J, Glaser PH. A radiative forc-ing analysis of tropical peatlands before and after their conversion to agricultural plantations. Global Change Biology. 2018;(11):5518-5533.

Goldenfum J. GHG Measurement Guidelines for Freshwater Reservoirs. The UNESCO/IHA Green-house Gas Emissions from Freshwater Reservoirs Research Project. International Hydropower Associ-ation (IHA). 2010.

Kumar A, Sharma MP. A modeling approach to assess the greenhouse gas risk in Koteshwar hydro-power reservoir, India. Human and Ecological Risk Assessment: An International Journal. 2016;22(8): 1651-1664.

Mosher JJ, Fortner AM, Phillips JR, Bevelhim-er MS, Stewart AJ, Troia MJ. Spatial and temporal correlates of greenhouse gas diffusion from a hydro-power reservoir in the southern United States. Water. 2015;7(11): 5910-5927.

Silva J, Lasso A, Lubberding H, Peña M, Gijzen H. Biases in greenhouse gases static chambers mea-surements in stabilization ponds: Comparison of flux estimation using linear and non-linear models. Atmo-spheric environment. 2015; 109: 130-138.

Canchala TdelR. Generación de gases de efecto invernadero en los sedimentos de un humedal natural eutrofizado: Influencia de nutrientes (N y P). Tesis maestría, Facultad de Ingeniería, Maestría en Inge-niería. Universidad del Valle; 2014.http://hdl.han-dle.net/10893/7723.

Tremblay A, Varfalvy L, Roehm C, Garneau M. Greenhouse gas emissions – Fluxes and processes. In Springer; 2005. 732 p.

Lopera LM, Rodriguez DC, Peñuela GA. Apli-cación de ensayos en discontinuo para la determi-nación de flujos de metano y dióxido de carbono en la degradación del material vegetal en el embalse Topocoro. Ingenierías USBMed. 2016; 7(2): 67-73.

ISAGEN S.A. E.S.P. Central Hidroeléctrica SOGAMOSO (CO). Balance de resultados durante la construcción 2009-2014.

American Public Health Association (APHA), American Water Works Association (AWWA), Pol-lution Control Federation (WPCF). Standard meth-ods for examination of water and wastewater. Wash-ington, USA; 2012. 22th ed.

Sogari N. UNIVERSIDAD NACIONAL DEL NORDESTE Comunicaciones Científicas y Tec-nológicas 2003 Resumen: T-027 Cálculo de la pro-ducción de metano generado por distintos restos orgánicos. [Internet]. Corrientes, Argentina; 2003. Disponible en: http://www.unne.edu.ar/unnevieja/Web/cyt/cyt/2003/comunicaciones/07-Tecnologi-cas/T-027.pdf.

Varnero, M. Manual de biogás. Organización de las naciones unidas para la alimentación y la agri-cultura (FAO). Roma, Italia; 2011. Disponible en: http://www.fao.org/docrep/019/as400s/as400s.pdf.

Zeikus J. The biology of methanogenic bacteria. Bacteriological reviews. 1977; 41(2): 514-541.

Chapra S, Canale R. Métodos numéricos para ingenieros. 5° ed. Mexico. Mc Graw Hill; 2006.1001 p.