Determination of biokinetic coefficients of an aerobic system for potato starch removal
Main Article Content
This study presents an aerobic laboratory scale-reactor completely mixed performance for starch wastewater treatment. The reactor was operated for 119 days divided into 5 operational phases which included the start-up and the variation of cell-residence time. In order to determine the biokinetic coefficients for starch removal, the cell-residence time was varied between 20 to 4 days, and the system operation was set hydraulic retention time of 24 hours with a completely mixed reactor setup. The chemical oxygen demand concentration was 1000mg/L in the inflow of the reactor and dissolved oxygen remained above 2mg/L.
In this experimentation time, the parameters such as pH, chemical oxygen demand (in the influent and effluent), dissolved oxygen and Mixed liquor suspended solids were monitored. The calculation of biokinetic constants was done by an approximate method, using the graphical Lineweaver-Burk method. The biokinetic coefficients determined were for Maximum substrate removal rate , Half saturation rate constant or affinity constant ( sludge yield coefficient (Y), and Microbial decay or indigenous respiration rate .
The results showed that Y, , and ( were in the range of 0,3- 0,7 mgSSV/mgBOD5, 2- 8 Day1 and 40-120 mg/L (COD- BOD5), respectively. Values of the coefficients were within the range of those reported for conventional activated sludge processes.
Ain, N., & Awang, N. A. (2021). Civil and environmental engineering reports the relationship between the biokinetic parameters of an aerobic granular sludge system and the applied operating conditions. Civil and Environmental Engineering Reports, 31, 0161–0171. https://doi.org/10.2478/ceer-2021-0011
Al-Malack, M. H. (2006). Determination of biokinetic coefficients of an immersed membrane bioreactor. Journal of Membrane Science, 271(1–2), 47–58. https://doi.org/10.1016/j.memsci.2005.07.008
Antwi, P., Li, J., Boadi, P. O., Meng, J., Shi, E., Deng, K., & Bondinuba, F. K. (2017). Estimation of biogas and methane yields in an UASB treating potato starch processing wastewater with backpropagation artificial neural network. Bioresource Technology, 228, 106–115. https://doi.org/10.1016/j.biortech.2016.12.045
APHA. (2017). STANDARD METHODS. For the examination of water and wastewater (E. W. Rice, R. B. Baird, A. D. Eaton, & L. S. Clesceri (eds.); 23 nd). American Public Health Association, American Water Works Association, Water Environment Federation.
Cai, T., Lin, H., Liu, Z., Chen, K., Lin, Y., Xi, Y., & Chhuond, K. (2019). IOP Conference Series: Earth and Environmental Science Starch wastewater treatment technology. IOP Conf. Ser.: Earth Environ. Sci, 358, 22054. https://doi.org/10.1088/1755-1315/358/2/022054
Inc, M. & E., Tchobanoglous, G., David, S. H., Ryujiro, T., & Burton, L. F. (2014). Wastewater enginneering treatment and resource recovery. McGraw Hill.
Khlifa Alfeluo, J., Aljfairi, K. S., & Hawege, E. F. (2021). العلوم :األسمرية الجامعة مجلة والتطبيقية األساسية ا ( لمجلد 6 العدد ) 2 (يونيو 2021 )م :ص ص 91-100 Biokinetic Coefficients Determination for the Biological Treatment of Langat River. Journal of Alasmarya University: Basic and Applied Sciences, 6(2), 91–100.
Moghaddam, A. H., & Sargolzaei, J. (2012). A mini-review over diverse methods used in starchy wastewater treatment. Recent Patents on Chemical Engineering, 5(2), 95–102. https://doi.org/10.2174/2211334711205020095
Molina, J. F., Rodriguez, C., & Bolívar, E. B. (2008). Manual de laboratorio procesos biologicos.
Molina Perez, F. J. (2011). Procesos Biológicos (Pimera edi). Reimpresos, Universidad de Antiquia.
Monod, J. (1949). The growth of bacterial cultures. Ann. Rev. Microbiol, 3, 371–394.
Mousavian, S., Seyedsalehi, · M, Paladino, · O, Sharifi, · P, Kyzas, · G Z, Dionisi, · D, & Takdastan, · A. (2019). Determining biokinetic coefficients for the upflow anaerobic sludge blanket reactor treating sugarcane wastewater in hot climate conditions. International Journal of Environmental Science and Technology, 16(3), 2231–2238. https://doi.org/10.1007/s13762-017-1631-5
Orozco Jaramillo, A. (2014). Bioingenieria de aguas residuales. Teoria y diseño (Segunda). Acodal.
Romero Rojas, J. A. (2000). Tratamiento de aguas residuales. Teoria y principios de diseño. (1ra ed.). Editorial Escuela Colombiana de Ingenieria.
Sperling, M. Von, & Chernicharo De Lemos, C. A. (2005). Biological Wastewater Treatment in Warm Climate Regions - Volume Two. 634. https://doi.org/10.5860/CHOICE.45-2633
Sponza, D. T., & Uluköy, A. (2008). Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP). Journal of Environmental Management, 86(1), 121–131. https://doi.org/10.1016/j.jenvman.2006.11.030
Wang, R. M., Wang, Y., Ma, G. P., He, Y. F., & Zhao, Y. Q. (2009). Efficiency of porous burnt-coke carrier on treatment of potato starch wastewater with an anaerobic-aerobic bioreactor. Chemical Engineering Journal, 148(1), 35–40. https://doi.org/10.1016/j.cej.2008.07.028
- Ainhoa Rubio-Clemente, Edwin L. Chica, Gustavo A. Peñuela, Application of Fenton process for treating petrochemical wastewater , Ingeniería y Competitividad: Vol. 16 No. 2 (2014)
- Stephanie Acevedo, Nancy J. Pino, Gustavo A. Peñuela, Biomass production of Scenedesmus sp and removal of nitrogen and phosphorus in domestic wastewater , Ingeniería y Competitividad: Vol. 19 No. 1 (2017): Revista Ingeniería y Competitividad
- Melissa Ruiz-Vasquez, Diana C. Rodríguez, Edwin L. Chica, Gustavo A. Peñuela, Calibration of two mathematical models at laboratory scale for predicting the generation of methane and carbon dioxide at the entrance point of the Chucurí river to the Topocoro Reservoir, Colombia , Ingeniería y Competitividad: Vol. 21 No. 1 (2019): Engineering and Competitiveness
- Erika Y. Alzate, Laura V. Castrillón-Cano, Luisa F. Rúa-Vásquez, Dania L. Rojas, Nancy J. Pino, Ruth M. Agudelo C, Gustavo A. Peñuela, Microbial consortium identification in constructed wetlands of horizontal subsurface flow fed with industrial wastewater colored , Ingeniería y Competitividad: Vol. 18 No. 2 (2016): Ingeniería y Competitividad
Accepted 2022-12-29
Published 2023-01-15
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).