Main Article Content

Authors

This article focuses on the utilization of additions such as microsilica (MS), metakaolin (MK), and calcium carbonate (CaCO3) for the design of cementitious materials based on ordinary Portland cement (OPC) suitable for 3D printing (additive manufacturing). The additions were incorporated into the mixes as replacements for OPC in quantities of 5-10% (MS), 5-15% (MK), and 5-15% (CaCO3). The effect of the additions on the fresh and hardened state properties of the mixes was evaluated. The properties studied included extrusion capability, workability (mini slump), flowability (flow table test), setting time, open time, and printability. Additionally, microscopic inspection of the printing inks was conducted using scanning electron microscopy (SEM), and physical-mechanical characterization was performed through tests for density, absorption, porosity, flexural strength, and compressive strength. The results demonstrated that the additions directly influence the aforementioned properties. It was concluded that the mix 90%OPC-5%MS-5%CaCO3 (mixture 1) and the mix 90%OPC-5%MS-5%MK (mixture 2) exhibited the most suitable set of characteristics to be implemented as 3D printing cementitious materials. From these mixes, it was possible to 3D print beam-type specimens (160 x 40 x 40 mm), achieving flexural strength values at 28 days of 3.4 MPa (mixture 1) and 4.0 MPa (mixture 2), and compressive strength values of 44 MPa (mixture 1) and 50 MPa (mixture 2). These results are considered as a starting point for future research related to the use of these types of additions in 3D printing of OPC-based cementitious materials.

Miguel A. Muñoz , Grupo Materiales Compuestos (CENM), Escuela de Ingeniería de Materiales, Universidad del Valle, Cali–Colombia

https://orcid.org/0000-0003-4206-5390

Ruby Mejía de Gutiérrez , Grupo Materiales Compuestos (CENM), Escuela de Ingeniería de Materiales, Universidad del Valle, Cali–Colombia

https://orcid.org/0000-0002-5404-2738

1.
Muñoz MA, Rincón DA, Robayo Salazar R, Mejía de Gutiérrez R. Development of 3d printing mixes based on portland cement and additions of metakaolin, microsilica, and calcium carbonate. inycomp [Internet]. 2023 Sep. 8 [cited 2024 Dec. 22];25(Suplemento):e-20113116. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13116

Hager I, Golonka A, Putanowicz R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? In: Procedia Engineering. Elsevier Ltd; 2016. p. 292–9. DOI: https://doi.org/10.1016/j.proeng.2016.07.357

Souza MT, Ferreira IM, Guzi de Moraes E, Senff L, Novaes de Oliveira AP. 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. Journal of Building Engineering. 2020;32(September). DOI: https://doi.org/10.1016/j.jobe.2020.101833

Baduge SK, Navaratnam S, Abu-Zidan Y, McCormack T, Nguyen K, Mendis P, et al. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. In: Structures. Elsevier; 2021. p. 1597–609. DOI: https://doi.org/10.1016/j.istruc.2020.12.061

Khan MS, Sanchez F, Zhou H. 3-D printing of concrete: Beyond horizons. Cem Concr Res. 2020;133(March). DOI: https://doi.org/10.1016/j.cemconres.2020.106070

Skibicki S. Optimization of cost of building with concrete slabs based on the maturity method. In: IOP conference series: materials science and engineering. IOP Publishing; 2017. p. 22061. DOI: https://doi.org/10.1088/1757-899X/245/2/022061

Lloret E, Shahab AR, Linus M, Flatt RJ, Gramazio F, Kohler M, et al. Complex concrete structures: Merging existing casting techniques with digital fabrication. CAD Computer Aided Design. 2015 Mar 1;60:40–9. DOI: https://doi.org/10.1016/j.cad.2014.02.011

Zambrano. Salud y accidentalidad en el sector de la construcción de Colombia [Internet]. 2019. Available from: https://intergremialconstruye.org/salud-y-accidentalidad-en-el-sector-de-la-construccion-de-colombia/

Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Vol. 129, Materials Science and Engineering R: Reports. Elsevier Ltd; 2018. p. 1–16. DOI: https://doi.org/10.1016/j.mser.2018.04.001

Ranjha S, Kulkarni A, Sanjayan J. 3D Construction Printing–A Review with Contemporary Method of Decarbonisation and Cost Benefit Analysis. In: First International Conference on 3D Construction Printing (3DcP), and the 6th International Conference on Innovative Production and Construction (IPC 2018). 2018.

Weller C, Kleer R, Piller FT. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. Int J Prod Econ. 2015 Jun 1;164:43–56. DOI: https://doi.org/10.1016/j.ijpe.2015.02.020

Pawel Sikora, Mehdi Chougan, Karla Cuevas, Marco Liebscher, Viktor Mechtcherine, Seyed Hamidreza Ghaffar, Maxime Liard, Didier Lootens, Pavel Krivenko MS and DS. The efects of nano‑ and micro‑sized additives on 3D printable cementitious and alkali‑activated composites: a review. 2021. DOI: https://doi.org/10.1007/s13204-021-01738-2

Vergara LA, Colorado HA. Additive manufacturing of Portland cement pastes with additions of kaolin, superplastificant and calcium carbonate. Constr Build Mater [Internet]. 2020;248:118669. Available from: https://doi.org/10.1016/j.conbuildmat.2020.118669 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118669

Asprone D, Menna C, Bos FP, Salet TAM, Mata-Falcón J, Kaufmann W. Rethinking reinforcement for digital fabrication with concrete. Cem Concr Res. 2018;112:111–21. DOI: https://doi.org/10.1016/j.cemconres.2018.05.020

Hambach M, Rutzen M, Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. In: 3D concrete printing technology. Elsevier; 2019. p. 73–113. DOI: https://doi.org/10.1016/B978-0-12-815481-6.00005-1

Zhang Y, Zhang Y, Liu G, Yang Y, Wu M, Pang B. Fresh properties of a novel 3D printing concrete ink. Constr Build Mater [Internet]. 2018;174:263–71. Available from: https://doi.org/10.1016/j.conbuildmat.2018.04.115 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.115

Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct. 2016;49(4):1213–20. DOI: https://doi.org/10.1617/s11527-015-0571-0

Carneau P, Mesnil R, Roussel N, Baverel O. An exploration of 3d printing design space inspired by masonry. In: Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS); 2019. p. 1–9.

Lothenbach B, Le Saout G, Gallucci E, Scrivener K. Influence of limestone on the hydration of Portland cements. Cem Concr Res. 2008;38(6):848–60. DOI: https://doi.org/10.1016/j.cemconres.2008.01.002

IMPADOC S.A. Impacar-24 [Internet]. 2015 Aug [cited 2022 Nov 21]. Available from: https://impadoc.com/wp-content/uploads/2021/02/EMV-023-Impacar-24.pdf

TOXEMENT. MICROSÍLICE [Internet]. 2016 [cited 2022 Dec 6]. p. 1–7. Available from: https://www.toxement.com.co/media/3379/microsi-lice_p.pdf

MAPEI. Microsilica Aditivo de humo de sílice densificado [Internet]. 2020 [cited 2022 Dec 6]. p. 1–2. Available from: https://cdnmedia.mapei.com/docs/librariesprovider10/products-documents/1_3000327-microsilica-sp_1bc1304e68eb40bb88957bbb62ce14da.pdf?sfvrsn=27aec7cd_0

Chen Y, Li Z, Chaves Figueiredo S, Çopuroğlu O, Veer F, Schlangen E. Limestone and calcined clay-based sustainable cementitious materials for 3D concrete printing: a fundamental study of extrudability and early-age strength development. Applied Sciences. 2019;9(9):1809. DOI: https://doi.org/10.3390/app9091809

Manikandan K, Wi K, Zhang X, Wang K, Qin H. Characterizing cement mixtures for concrete 3D printing. Manuf Lett [Internet]. 2020;24:33–7. Available from: https://doi.org/10.1016/j.mfglet.2020.03.002 DOI: https://doi.org/10.1016/j.mfglet.2020.03.002

Kazemian A, Yuan X, Meier R, Khoshnevis B. Performance-Based Testing of Portland Cement Concrete for Construction-Scale 3D Printing [Internet]. 3D Concrete Printing Technology. Elsevier Inc.; 2019. 13–35 p. Available from: http://dx.doi.org/10.1016/B978-0-12-815481-6.00002-6 DOI: https://doi.org/10.1016/B978-0-12-815481-6.00002-6

ENDER 3 MAX | Exclusivo en Inovamarket | ENVÍO GRATIS EN MÉXICO [Internet]. [cited 2021 Sep 30]. Available from: https://www.inovamarket.com/p/ender-3-max/

Ceramic 3D Printer Kit | Eazao Kit - Eazao [Internet]. [cited 2021 Sep 30]. Available from: https://www.eazao.com/product/ceramic-3d-printer-kit-eazao-kit/

Che Y, Yang H. Hydration products, pore structure, and compressive strength of extrusion-based 3D printed cement pastes containing nano calcium carbonate. Case Studies in Construction Materials. 2022;17:e01590. DOI: https://doi.org/10.1016/j.cscm.2022.e01590

Lootens D, Jousset P, Martinie L, Roussel N, Flatt RJ. Yield stress during setting of cement pastes from penetration tests. Cem Concr Res. 2009;39(5):401–8. DOI: https://doi.org/10.1016/j.cemconres.2009.01.012

Li W, Hua L, Shi Y, Wang P, Liu Z, Cui D, et al. Influence of metakaolin on the hydration and microstructure evolution of cement paste during the early stage. Appl Clay Sci. 2022;229:106674. DOI: https://doi.org/10.1016/j.clay.2022.106674

Fragoso Doria JA, Visbal Jacome JE. El uso de la puzolana de origen natural en concreto hidráulico. 2021;

Kocak Y. Effects of metakaolin on the hydration development of Portland–composite cement. Journal of Building Engineering. 2020;31:101419. DOI: https://doi.org/10.1016/j.jobe.2020.101419

Matschei T, Lothenbach B, Glasser FP. The role of calcium carbonate in cement hydration. Cem Concr Res. 2007;37(4):551–8. DOI: https://doi.org/10.1016/j.cemconres.2006.10.013

Mendoza Reales OA, Duda P, Silva ECCM, Paiva MDM, Filho RDT. Nanosilica particles as structural buildup agents for 3D printing with Portland cement pastes. Constr Build Mater [Internet]. 2019;219:91–100. Available from: https://doi.org/10.1016/j.conbuildmat.2019.05.174 DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.174

Long WJ, Lin C, Tao JL, Ye TH, Fang Y. Printability and particle packing of 3D-printable limestone calcined clay cement composites. Constr Build Mater. 2021;282:122647. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122647

Mazhoud B, Perrot A, Picandet V, Rangeard D, Courteille E. Underwater 3D printing of cement-based mortar. Constr Build Mater. 2019;214:458–67. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.134

Ali B, Qureshi LA, Shah SHA, Rehman SU, Hussain I, Iqbal M. A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash. Constr Build Mater. 2020;251:118980. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118980

Avet F, Snellings R, Diaz AA, Haha M Ben, Scrivener K. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res. 2016;85:1–11. DOI: https://doi.org/10.1016/j.cemconres.2016.02.015

Quintero Ortíz LA, Herrera J, Corzo L, García J. Relación entre la resistencia a la compresión y la porosidad del concreto evaluada a partir de parámetros ultrasónicos. Revista ION. 2011;24(1):69–76.

Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2018;162:613–27. DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.051

Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42(12):1579–89. DOI: https://doi.org/10.1016/j.cemconres.2012.09.006

Niño Jairo. Tecnología Del Concreto Tomo 1 [Internet]. 2010 [cited 2022 Nov 20]. p. 119–20. Available from: https://doku.pub/documents/tecnologia-del-concreto-tomo-1-9qgo5vjv3kln

Cedeño Cuellar JE, Cuellar Lozano PA, Izurieta Carvajal O. Fisuras por retracción en el hormigon. 2009.

Received 2023-08-04
Accepted 2023-08-17
Published 2023-09-08