Development of 3d printing mixes based on portland cement and additions of metakaolin, microsilica, and calcium carbonate
Main Article Content
This article focuses on the utilization of additions such as microsilica (MS), metakaolin (MK), and calcium carbonate (CaCO3) for the design of cementitious materials based on ordinary Portland cement (OPC) suitable for 3D printing (additive manufacturing). The additions were incorporated into the mixes as replacements for OPC in quantities of 5-10% (MS), 5-15% (MK), and 5-15% (CaCO3). The effect of the additions on the fresh and hardened state properties of the mixes was evaluated. The properties studied included extrusion capability, workability (mini slump), flowability (flow table test), setting time, open time, and printability. Additionally, microscopic inspection of the printing inks was conducted using scanning electron microscopy (SEM), and physical-mechanical characterization was performed through tests for density, absorption, porosity, flexural strength, and compressive strength. The results demonstrated that the additions directly influence the aforementioned properties. It was concluded that the mix 90%OPC-5%MS-5%CaCO3 (mixture 1) and the mix 90%OPC-5%MS-5%MK (mixture 2) exhibited the most suitable set of characteristics to be implemented as 3D printing cementitious materials. From these mixes, it was possible to 3D print beam-type specimens (160 x 40 x 40 mm), achieving flexural strength values at 28 days of 3.4 MPa (mixture 1) and 4.0 MPa (mixture 2), and compressive strength values of 44 MPa (mixture 1) and 50 MPa (mixture 2). These results are considered as a starting point for future research related to the use of these types of additions in 3D printing of OPC-based cementitious materials.
Hager I, Golonka A, Putanowicz R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? In: Procedia Engineering. Elsevier Ltd; 2016. p. 292–9. DOI: https://doi.org/10.1016/j.proeng.2016.07.357
Souza MT, Ferreira IM, Guzi de Moraes E, Senff L, Novaes de Oliveira AP. 3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. Journal of Building Engineering. 2020;32(September). DOI: https://doi.org/10.1016/j.jobe.2020.101833
Baduge SK, Navaratnam S, Abu-Zidan Y, McCormack T, Nguyen K, Mendis P, et al. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods. In: Structures. Elsevier; 2021. p. 1597–609. DOI: https://doi.org/10.1016/j.istruc.2020.12.061
Khan MS, Sanchez F, Zhou H. 3-D printing of concrete: Beyond horizons. Cem Concr Res. 2020;133(March). DOI: https://doi.org/10.1016/j.cemconres.2020.106070
Skibicki S. Optimization of cost of building with concrete slabs based on the maturity method. In: IOP conference series: materials science and engineering. IOP Publishing; 2017. p. 22061. DOI: https://doi.org/10.1088/1757-899X/245/2/022061
Lloret E, Shahab AR, Linus M, Flatt RJ, Gramazio F, Kohler M, et al. Complex concrete structures: Merging existing casting techniques with digital fabrication. CAD Computer Aided Design. 2015 Mar 1;60:40–9. DOI: https://doi.org/10.1016/j.cad.2014.02.011
Zambrano. Salud y accidentalidad en el sector de la construcción de Colombia [Internet]. 2019. Available from: https://intergremialconstruye.org/salud-y-accidentalidad-en-el-sector-de-la-construccion-de-colombia/
Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Vol. 129, Materials Science and Engineering R: Reports. Elsevier Ltd; 2018. p. 1–16. DOI: https://doi.org/10.1016/j.mser.2018.04.001
Ranjha S, Kulkarni A, Sanjayan J. 3D Construction Printing–A Review with Contemporary Method of Decarbonisation and Cost Benefit Analysis. In: First International Conference on 3D Construction Printing (3DcP), and the 6th International Conference on Innovative Production and Construction (IPC 2018). 2018.
Weller C, Kleer R, Piller FT. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. Int J Prod Econ. 2015 Jun 1;164:43–56. DOI: https://doi.org/10.1016/j.ijpe.2015.02.020
Pawel Sikora, Mehdi Chougan, Karla Cuevas, Marco Liebscher, Viktor Mechtcherine, Seyed Hamidreza Ghaffar, Maxime Liard, Didier Lootens, Pavel Krivenko MS and DS. The efects of nano‑ and micro‑sized additives on 3D printable cementitious and alkali‑activated composites: a review. 2021. DOI: https://doi.org/10.1007/s13204-021-01738-2
Vergara LA, Colorado HA. Additive manufacturing of Portland cement pastes with additions of kaolin, superplastificant and calcium carbonate. Constr Build Mater [Internet]. 2020;248:118669. Available from: https://doi.org/10.1016/j.conbuildmat.2020.118669 DOI: https://doi.org/10.1016/j.conbuildmat.2020.118669
Asprone D, Menna C, Bos FP, Salet TAM, Mata-Falcón J, Kaufmann W. Rethinking reinforcement for digital fabrication with concrete. Cem Concr Res. 2018;112:111–21. DOI: https://doi.org/10.1016/j.cemconres.2018.05.020
Hambach M, Rutzen M, Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. In: 3D concrete printing technology. Elsevier; 2019. p. 73–113. DOI: https://doi.org/10.1016/B978-0-12-815481-6.00005-1
Zhang Y, Zhang Y, Liu G, Yang Y, Wu M, Pang B. Fresh properties of a novel 3D printing concrete ink. Constr Build Mater [Internet]. 2018;174:263–71. Available from: https://doi.org/10.1016/j.conbuildmat.2018.04.115 DOI: https://doi.org/10.1016/j.conbuildmat.2018.04.115
Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct. 2016;49(4):1213–20. DOI: https://doi.org/10.1617/s11527-015-0571-0
Carneau P, Mesnil R, Roussel N, Baverel O. An exploration of 3d printing design space inspired by masonry. In: Proceedings of IASS Annual Symposia. International Association for Shell and Spatial Structures (IASS); 2019. p. 1–9.
Lothenbach B, Le Saout G, Gallucci E, Scrivener K. Influence of limestone on the hydration of Portland cements. Cem Concr Res. 2008;38(6):848–60. DOI: https://doi.org/10.1016/j.cemconres.2008.01.002
IMPADOC S.A. Impacar-24 [Internet]. 2015 Aug [cited 2022 Nov 21]. Available from: https://impadoc.com/wp-content/uploads/2021/02/EMV-023-Impacar-24.pdf
TOXEMENT. MICROSÍLICE [Internet]. 2016 [cited 2022 Dec 6]. p. 1–7. Available from: https://www.toxement.com.co/media/3379/microsi-lice_p.pdf
MAPEI. Microsilica Aditivo de humo de sílice densificado [Internet]. 2020 [cited 2022 Dec 6]. p. 1–2. Available from: https://cdnmedia.mapei.com/docs/librariesprovider10/products-documents/1_3000327-microsilica-sp_1bc1304e68eb40bb88957bbb62ce14da.pdf?sfvrsn=27aec7cd_0
Chen Y, Li Z, Chaves Figueiredo S, Çopuroğlu O, Veer F, Schlangen E. Limestone and calcined clay-based sustainable cementitious materials for 3D concrete printing: a fundamental study of extrudability and early-age strength development. Applied Sciences. 2019;9(9):1809. DOI: https://doi.org/10.3390/app9091809
Manikandan K, Wi K, Zhang X, Wang K, Qin H. Characterizing cement mixtures for concrete 3D printing. Manuf Lett [Internet]. 2020;24:33–7. Available from: https://doi.org/10.1016/j.mfglet.2020.03.002 DOI: https://doi.org/10.1016/j.mfglet.2020.03.002
Kazemian A, Yuan X, Meier R, Khoshnevis B. Performance-Based Testing of Portland Cement Concrete for Construction-Scale 3D Printing [Internet]. 3D Concrete Printing Technology. Elsevier Inc.; 2019. 13–35 p. Available from: http://dx.doi.org/10.1016/B978-0-12-815481-6.00002-6 DOI: https://doi.org/10.1016/B978-0-12-815481-6.00002-6
ENDER 3 MAX | Exclusivo en Inovamarket | ENVÍO GRATIS EN MÉXICO [Internet]. [cited 2021 Sep 30]. Available from: https://www.inovamarket.com/p/ender-3-max/
Ceramic 3D Printer Kit | Eazao Kit - Eazao [Internet]. [cited 2021 Sep 30]. Available from: https://www.eazao.com/product/ceramic-3d-printer-kit-eazao-kit/
Che Y, Yang H. Hydration products, pore structure, and compressive strength of extrusion-based 3D printed cement pastes containing nano calcium carbonate. Case Studies in Construction Materials. 2022;17:e01590. DOI: https://doi.org/10.1016/j.cscm.2022.e01590
Lootens D, Jousset P, Martinie L, Roussel N, Flatt RJ. Yield stress during setting of cement pastes from penetration tests. Cem Concr Res. 2009;39(5):401–8. DOI: https://doi.org/10.1016/j.cemconres.2009.01.012
Li W, Hua L, Shi Y, Wang P, Liu Z, Cui D, et al. Influence of metakaolin on the hydration and microstructure evolution of cement paste during the early stage. Appl Clay Sci. 2022;229:106674. DOI: https://doi.org/10.1016/j.clay.2022.106674
Fragoso Doria JA, Visbal Jacome JE. El uso de la puzolana de origen natural en concreto hidráulico. 2021;
Kocak Y. Effects of metakaolin on the hydration development of Portland–composite cement. Journal of Building Engineering. 2020;31:101419. DOI: https://doi.org/10.1016/j.jobe.2020.101419
Matschei T, Lothenbach B, Glasser FP. The role of calcium carbonate in cement hydration. Cem Concr Res. 2007;37(4):551–8. DOI: https://doi.org/10.1016/j.cemconres.2006.10.013
Mendoza Reales OA, Duda P, Silva ECCM, Paiva MDM, Filho RDT. Nanosilica particles as structural buildup agents for 3D printing with Portland cement pastes. Constr Build Mater [Internet]. 2019;219:91–100. Available from: https://doi.org/10.1016/j.conbuildmat.2019.05.174 DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.174
Long WJ, Lin C, Tao JL, Ye TH, Fang Y. Printability and particle packing of 3D-printable limestone calcined clay cement composites. Constr Build Mater. 2021;282:122647. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122647
Mazhoud B, Perrot A, Picandet V, Rangeard D, Courteille E. Underwater 3D printing of cement-based mortar. Constr Build Mater. 2019;214:458–67. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.134
Ali B, Qureshi LA, Shah SHA, Rehman SU, Hussain I, Iqbal M. A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash. Constr Build Mater. 2020;251:118980. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118980
Avet F, Snellings R, Diaz AA, Haha M Ben, Scrivener K. Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res. 2016;85:1–11. DOI: https://doi.org/10.1016/j.cemconres.2016.02.015
Quintero Ortíz LA, Herrera J, Corzo L, García J. Relación entre la resistencia a la compresión y la porosidad del concreto evaluada a partir de parámetros ultrasónicos. Revista ION. 2011;24(1):69–76.
Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2018;162:613–27. DOI: https://doi.org/10.1016/j.conbuildmat.2017.12.051
Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42(12):1579–89. DOI: https://doi.org/10.1016/j.cemconres.2012.09.006
Niño Jairo. Tecnología Del Concreto Tomo 1 [Internet]. 2010 [cited 2022 Nov 20]. p. 119–20. Available from: https://doku.pub/documents/tecnologia-del-concreto-tomo-1-9qgo5vjv3kln
Cedeño Cuellar JE, Cuellar Lozano PA, Izurieta Carvajal O. Fisuras por retracción en el hormigon. 2009.
- Andres Salas, Janneth Torres, Ruby Mejía de Gutiérrez, Silvio Delvasto, Engineering properties of blended concrete with Colombian rice husk ash and metakaolin , Ingeniería y Competitividad: Vol. 15 No. 2 (2013): Ingeniería y Competitividad
- Susan A. Bernal, Ruby Mejía de Gutierrez, Erich D. Rodríguez, Alkali-activated materials: cementing a sustainable future , Ingeniería y Competitividad: Vol. 15 No. 2 (2013): Ingeniería y Competitividad
- Silvia R. Izquierdo, Ruby Mejía de Gutiérrez, Janneth Torres Agredo, Study of mortars added with fluid catalytic cracking catalyst residue (FCC) under the influence of high temperatures , Ingeniería y Competitividad: Vol. 16 No. 2 (2014)
- Silvio Delvasto Arjona, Fernando Perdomo, Ruby Mejía de Gutiérrez, Ecolaminados de Pead-Fibras de Fiques. , Ingeniería y Competitividad: Vol. 3 No. 1 (2001)
Accepted 2023-08-17
Published 2023-09-08
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).