Contenido principal del artículo

El presente trabajo de investigación tiene como objetivo determiner el efecto de la relación Carbono/Nitrógeno en la producción de biomasa y carotenoides totales en una cepa de Scenedesmus sp. Inicialmente, se evaluaron tres fuentes de carbono diferentes (carbonato de sodio, bicarbonato de sodio y acetato de sodio) bajo diferentes concentraciones de una fuente de nitrógeno (nitrato de sodio) en reactores tubulares de 250 ml. Los reactores fueron operados a 25°C durante 40 días en un ciclo de luz:oscuridad de 12:12 horas y un flujo continuo de aire. De acuerdo con los resultados se encontró que mediante el ajuste de la concentración de la fuente de carbono y nitrógeno, es posible aumentar la concentración de biomasa hasta 0.8 g/L. Por otra parte, mediante la regulación de la concentración de carbonato de sodio y nitrato de sodio, el contenido final carotenoides totales se incrementó dos veces (de 0.3 a 0.66% p/p). Los resultados de este estudio muestran que, al ajustar las concentraciones de la fuente de carbono y de nitrógeno es posible obtener un aumento interesante en la biomasa final y la concentración de carotenoides totales. Finalmente, es importante resaltar que se debe estudiar el efecto de otras estrategias como la luz, la salinidad y el pH, junto con la relación C/N para obtener un método adecuado que lleve a las celulas hacia un estress metabolico y mejore así la síntesis de carotenoides en Scencedesmus sp.

1.
Guarin-Villegas E, Remolina-Páez LM, Bermúdez-Castro JP, Mogollón-Londoño SO, Contreras-Ropero JE, García Martínez JB, Barajas-Solano AF. Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas. inycomp [Internet]. 3 de enero de 2020 [citado 11 de agosto de 2022];22(1):1-13. Disponible en: //revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/8811

(1) Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, et al. Dietary Intake of Carotenoids and Their Antioxidant and Anti-Inflammatory Effects in Cardiovascular Care. Mediators Inflamm [Internet]. 2013;2013:1–11. Doi: 10.1155/2013/782137.

(2) Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol [Internet]. 2007;74(6):1163–74. Doi: 10.1007/s00253-007-0844-9.

(3) D’Alessandro EB, Filho NRA. Concepts and studies on lipid and pigments of microalgae: A review. Renew Sustain Energy Rev [Internet]. 2016;58:832–41. Doi: 10.1016/j.rser.2015.12.162.

(4) Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol adv [Internet]. 2018;36(1), 54–67. Doi: 10.1016/j.biotechadv.2017.09.009.

(5) Del Campo JA, oreno J, Rodr gue , Vargas MA, Rivas J, Guerrero MG. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol [Internet]. 2000;76(1):51–9. Doi: 10.1016/S01681656(99)00178-9.

(6) Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem [Internet]. 2008;43(4):398–405. Doi: 10.1016/j.procbio.2008.01.004.

(7) Del Campo JA, Rodr gue , Moreno J, Vargas MA, Rivas J, Guerrero MG. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol [Internet]. 2004;64(6):848–854. Doi: 10.1007/s00253-003-1510-5.

(8) Shi X-M, Zhang X-W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol [Internet]. 2000;27(3– 5):312–8. Doi: 10.1016/S01410229(00)00208-8.

(9) Chen C-Y, Jesisca, Hsieh C, Lee D-J, Chang C-H, Chang J-S. Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresour Technol [Internet]. 2016;200:500–5. Doi: 10.1016/j.biortech.2015.10.071.

(10) Chen J-H, Chen C-Y, Hasunuma T, Kondo A, Chang C-H, Ng I-S, et al. Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresour Technol [Internet]. 2019;278:17–25. Doi: 10.1016/j.biortech.2019.01.041.

(11) Casal C, Cuaresma M, Vega JM, Vilchez C. Enhanced Productivity of a Lutein Enriched Novel Acidophile Microalga Grown on Urea. Mar Drugs [Internet]. 2011;9(1):29–42. Doi: 10.3390/md9010029.

(12) García-González M, Moreno J, Cañavate JP, Anguis V, Prieto A, Manzano C, et al. Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J Appl Phycol [Internet]. 2003;15(2–3):177–184. Doi: 10.1023/a:1023892520443.

(13) León R, Martín M, Vigara J, Vilchez C, Vega JM. Microalgae mediated photoproduction of β-carotene in aqueous–organic two phase systems. Biomol Eng [Internet]. 2003;20(4– 6):177–82. Doi: 10.1016/S13890344(03)00048-0.

(14) Gómez PI, Inostroza I, Pizarro M, Pérez J. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants [Internet]. 2013;5(plt026). Doi: 10.1093/aobpla/plt026.

(15) Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol [Internet]. 2008;20(3):245–251. Doi: 10.1007/s10811-007-9233-0.

(16) Jerez–Mogollón SJ, Rueda-Quiñonez LV, Alfonso–Velazco LY, Barajas– Solano AF, Barajas–Ferreira C, Kafarov V. Improvement of lab-scale production of microalgal carbohydrates for biofuel

production. CT&F - Ciencia, Tecnol y Futur [Internet]. 2012;5(1):103–16.

(17) Lin C., Lay C. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy [Internet]. 2004;29(1):41–5. Doi: 10.1016/s03603199(03)00083-1.

(18) Barajas–Solano AF, Guzman-Monsalve A, Kafarov V. Effect of Carbon– Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccocus braunii UIS 003. Chem Eng Trans [Internet]. 2016;49:247–52. Doi: 10.3303/CET1649042.

(19) Estévez-Landazábal L-L, Barajas– Solano AF, Barajas–Ferreira C, Kafarov V. Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. CT&F - Ciencia, Tecnol y Futur [Internet]. 2013;5(2):113–26. Available from: https://www.ecopetrol.com.co/especiales /ctyf_junio_2013/Pdfs_web/v5_02_09.p df.

(20) Andersen RA, editor. Recipes for Freshwater and Seawater Media. In: Algal Culturing Techniques. 1st ed. Elsevier Academic Press; 2005. p. 429– 538.

(21) TIBCO StatisticaTM [Internet]. TIBCO Software Inc; 2004. Available from: https://www.tibco.com/sites/tibco/files/r esources/ds-statistica-tech-brief-bigdata-analytics-final.pdf.

(22) Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF. Standard Methods for Measuring Growth of Algae and Their Composition. Algae for Biofuels