Main Article Content

Authors

This study investigates the effect of C/N ratio on the production of biomass and total carotenoids on a Scenedesmus sp. Initially, three different carbon sources (sodium carbonate, sodium bicarbonate and sodium acetate) were tested under different concentrations of a nitrogen source (sodium nitrate) in 250 mL tubular air-lift reactors. The reactors were operated at 25 °C for 40 days. in light:dark cycle of 12:12, under a continuous flow of air. Results showed that by the adjustment of the concentration of the carbon and nitrogen source, it is possible to increase the concentration of biomass up to 0.8 g/L. However, by the regulation on the concentration of sodium carbonate and sodium nitrate, the final content of total carotenoids was increased two times (from 0.3 to 0.66 % w/w). Results from this study shows that an specific ratio between the carbon source employed and the concentration of the nitrogen source shows that an outstanding increase on the final biomass and the concentration of total carotenoids that can be produced.


Finally, the effect of well-known strategies such as light, salinity and pH, coupled with C/N ratio must be studied to achieve a proper method to stress the cell culture and enhance the synthesis of carotenoids in Scenedesmus sp.


 

1.
Barajas-Solano AF, Guarin-Villegas E, Remolina-Páez LM, Bermúdez-Castro JP, Mogollón-Londoño SO, Contreras-Ropero JE, García Martínez JB. Effect of de Carbon/Nitrogen ratio on the production of microalgae-based carotenoids. inycomp [Internet]. 2020 Jan. 3 [cited 2024 Dec. 21];22(1):1-13. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/8811

(1) Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, et al. Dietary Intake of Carotenoids and Their Antioxidant and Anti-Inflammatory Effects in Cardiovascular Care. Mediators Inflamm [Internet]. 2013;2013:1–11. Doi: 10.1155/2013/782137.

(2) Del Campo JA, García-González M, Guerrero MG. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol [Internet]. 2007;74(6):1163–74. Doi: 10.1007/s00253-007-0844-9.

(3) D’Alessandro EB, Filho NRA. Concepts and studies on lipid and pigments of microalgae: A review. Renew Sustain Energy Rev [Internet]. 2016;58:832–41. Doi: 10.1016/j.rser.2015.12.162.

(4) Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol adv [Internet]. 2018;36(1), 54–67. Doi: 10.1016/j.biotechadv.2017.09.009.

(5) Del Campo JA, oreno J, Rodr gue , Vargas MA, Rivas J, Guerrero MG. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol [Internet]. 2000;76(1):51–9. Doi: 10.1016/S01681656(99)00178-9.

(6) Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J, Molina E. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem [Internet]. 2008;43(4):398–405. Doi: 10.1016/j.procbio.2008.01.004.

(7) Del Campo JA, Rodr gue , Moreno J, Vargas MA, Rivas J, Guerrero MG. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol [Internet]. 2004;64(6):848–854. Doi: 10.1007/s00253-003-1510-5.

(8) Shi X-M, Zhang X-W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol [Internet]. 2000;27(3– 5):312–8. Doi: 10.1016/S01410229(00)00208-8.

(9) Chen C-Y, Jesisca, Hsieh C, Lee D-J, Chang C-H, Chang J-S. Production, extraction and stabilization of lutein from microalga Chlorella sorokiniana MB-1. Bioresour Technol [Internet]. 2016;200:500–5. Doi: 10.1016/j.biortech.2015.10.071.

(10) Chen J-H, Chen C-Y, Hasunuma T, Kondo A, Chang C-H, Ng I-S, et al. Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresour Technol [Internet]. 2019;278:17–25. Doi: 10.1016/j.biortech.2019.01.041.

(11) Casal C, Cuaresma M, Vega JM, Vilchez C. Enhanced Productivity of a Lutein Enriched Novel Acidophile Microalga Grown on Urea. Mar Drugs [Internet]. 2011;9(1):29–42. Doi: 10.3390/md9010029.

(12) García-González M, Moreno J, Cañavate JP, Anguis V, Prieto A, Manzano C, et al. Conditions for open-air outdoor culture of Dunaliella salina in southern Spain. J Appl Phycol [Internet]. 2003;15(2–3):177–184. Doi: 10.1023/a:1023892520443.

(13) León R, Martín M, Vigara J, Vilchez C, Vega JM. Microalgae mediated photoproduction of β-carotene in aqueous–organic two phase systems. Biomol Eng [Internet]. 2003;20(4– 6):177–82. Doi: 10.1016/S13890344(03)00048-0.

(14) Gómez PI, Inostroza I, Pizarro M, Pérez J. From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants [Internet]. 2013;5(plt026). Doi: 10.1093/aobpla/plt026.

(15) Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol [Internet]. 2008;20(3):245–251. Doi: 10.1007/s10811-007-9233-0.

(16) Jerez–Mogollón SJ, Rueda-Quiñonez LV, Alfonso–Velazco LY, Barajas– Solano AF, Barajas–Ferreira C, Kafarov V. Improvement of lab-scale production of microalgal carbohydrates for biofuel

production. CT&F - Ciencia, Tecnol y Futur [Internet]. 2012;5(1):103–16.

(17) Lin C., Lay C. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy [Internet]. 2004;29(1):41–5. Doi: 10.1016/s03603199(03)00083-1.

(18) Barajas–Solano AF, Guzman-Monsalve A, Kafarov V. Effect of Carbon– Nitrogen Ratio for the Biomass Production, Hydrocarbons and Lipids on Botryoccocus braunii UIS 003. Chem Eng Trans [Internet]. 2016;49:247–52. Doi: 10.3303/CET1649042.

(19) Estévez-Landazábal L-L, Barajas– Solano AF, Barajas–Ferreira C, Kafarov V. Improvement of lipid productivity on Chlorella vulgaris using waste glycerol and sodium acetate. CT&F - Ciencia, Tecnol y Futur [Internet]. 2013;5(2):113–26. Available from: https://www.ecopetrol.com.co/especiales /ctyf_junio_2013/Pdfs_web/v5_02_09.p df.

(20) Andersen RA, editor. Recipes for Freshwater and Seawater Media. In: Algal Culturing Techniques. 1st ed. Elsevier Academic Press; 2005. p. 429– 538.

(21) TIBCO StatisticaTM [Internet]. TIBCO Software Inc; 2004. Available from: https://www.tibco.com/sites/tibco/files/r esources/ds-statistica-tech-brief-bigdata-analytics-final.pdf.

(22) Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF. Standard Methods for Measuring Growth of Algae and Their Composition. Algae for Biofuels