Green hydrogen state of the art review of generation technologies for the decarbonisation of the energy sector
Main Article Content
The growing concern about environmental problems and the depletion of fossil fuels has generated an interest in the development of technologies that allow us to produce electricity without polluting the environment. In recent decades, hydrogen has become the main candidate to replace fossil fuels, with the possibility of being used as a primary fuel to be burned in combustion engines, or as an energy vector for the production of energy by means of fuel cells, making it an attractive fuel due to its high energy density and the fact that it does not emit any type of pollution. At present, hydrogen is not produced for energy purposes, but for industrial purposes, so the purpose of this article is to learn about the predominant forms of hydrogen production, which use fossil fuels as raw materials, and to study the new technologies developed to obtain decarbonised hydrogen for the energy sector, researching known technologies such as electrolysis, comparing the functioning of the existing types of electrolysis and describing other novel forms such as those that make up the production of biological hydrogen or bio-hydrogen, analysing different research with the aim of presenting the results in fermentative methods, the use of microalgae and the microbial electrolysis cell, explaining the main results in the production of hydrogen for the energy sector, as well as the main applications in the production of hydrogen from fossil fuels and the use of microalgae.
Sources of Greenhouse Gas Emissions [Internet]. [citado 12 de marzo de 2023]. Disponible en: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
IEA. Greenhouse Gas Emissions from Energy Data Explorer – Data Tools - IEA [Internet]. 2021 [citado 27 de enero de 2023]. Disponible en: https://www.iea.org/data-and-statistics/data-tools/greenhouse-gas-emissions-from-energy-data-explorer
IEA. Global CO2 emissions rebounded to their highest level in history in 2021 - News - IEA [Internet]. 2022 [citado 27 de enero de 2023]. Disponible en: https://www.iea.org/news/global-co2-emissions-rebounded-to-their-highest-level-in-history-in-2021
Shiva Kumar S, Lim H. An overview ofwater electrolysis technologies for green hydrogen production. Energy Reports [Internet]. 1 de noviembre de 2022 [citado 28 de diciembre de 2022];8:13793–813. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2352484722020625
Tashie-Lewis BC, Nnabuife SG. Hydrogen Production, Distribution, Storage and Power Conversion in a Hydrogen Economy - A Technology Review. Chemical Engineering Journal Advances [Internet]. 15 de noviembre de 2021 [citado 5 de enero de 2023];8:100172. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2666821121000880 DOI: https://doi.org/10.1016/j.ceja.2021.100172
Ferraren-De Cagalitan DDT, Abundo MLS. A review of biohydrogen production technology for application towards hydrogen fuel cells. Renewable and Sustainable Energy Reviews [Internet]. 1 de noviembre de 2021 [citado 5 de enero de 2023];151:111413. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1364032121006973 DOI: https://doi.org/10.1016/j.rser.2021.111413
Xu X, Zhou Q, Yu D. The future of hydrogen energy: Bio-hydrogen production technology. Int J Hydrogen Energy [Internet]. 15 de septiembre de 2022 [citado 4 de enero de 2023];47(79):33677–98. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319922033961 DOI: https://doi.org/10.1016/j.ijhydene.2022.07.261
Menaca R, Bedoya-Caro ID. Una revisión del uso del hidrógeno en motores de encendido por compresión (diésel) y un análisis de su posible uso en motores duales en Colombia. Revista UIS Ingenierías [Internet]. 21 de julio de 2022 [citado 12 de mayo de 2023];21(3):33–54. Disponible en: https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/13211 DOI: https://doi.org/10.18273/revuin.v21n3-2022004
Pramuanjaroenkij A, Kakaç S. The fuel cell electric vehicles: The highlight review. Int J Hydrogen Energy [Internet]. 24 de diciembre de 2022 [citado 8 de enero de 2023]; Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319922053368
Gao FY, Yu PC, Gao MR. Seawater electrolysis technologies for green hydrogen production: challenges and opportunities. Curr Opin Chem Eng [Internet]. 1 de junio de 2022 [citado 4 de enero de 2023];36:100827. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211339822000375 DOI: https://doi.org/10.1016/j.coche.2022.100827
Abdin Z, Zafaranloo A, Rafiee A, Mérida W, Lipiński W, Khalilpour KR. Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews [Internet]. 1 de marzo de 2020 [citado 9 de julio de 2023];120:109620. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1364032119308275 DOI: https://doi.org/10.1016/j.rser.2019.109620
Baykara SZ. Hydrogen: A brief overview on its sources, production and environmental impact. Int J Hydrogen Energy [Internet]. 7 de junio de 2018 [citado 13 de marzo de 2023];43(23):10605–14. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319918304002 DOI: https://doi.org/10.1016/j.ijhydene.2018.02.022
Olabi AG, Bahri A saleh, Abdelghafar AA, Baroutaji A, Sayed ET, Alami AH, et al. Large-vscale hydrogen production and storage technologies: Current status and future directions. Int J Hydrogen Energy [Internet]. 1 de julio de 2021 [citado 5 de enero de 2023];46(45):23498–528. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319920339276 DOI: https://doi.org/10.1016/j.ijhydene.2020.10.110
Mazloomi K, Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews [Internet]. 1 de junio de 2012 [citado 16 de julio de 2023];16(5):3024–33. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1364032112001220 DOI: https://doi.org/10.1016/j.rser.2012.02.028
Miller J, Visicdi L. Innovación en energía limpia en América Latina [Internet]. 2016 [citado 11 de abril de 2024]. Disponible en: https://ikels-dspace.azurewebsites.net/bitstream/handle/123456789/838/Innovación en energía limpia en América Latina.pdf?sequence=1
Luizaga Velasco AB, Berigüete Alcántara FE, Rodríguez Cantalapiedra IR. Economía circular, energía limpia y ciudadanía en América Latina y El Caribe: nuevos retos y oportunidades hacia ciudades sostenibles y resilientes [Internet]. Universitatt Politenica de Catalunya; 2022 [citado 11 de abril de 2024]. Disponible en: https://upcommons.upc.edu/handle/2117/368399
Reyes Gil RE, Turriago Hoyos Á, Luis Á, Mercado Suarez ÁL. Las Energías Renovables no convencionales en Colombia: Hacia una matriz energética más limpia. REVISTA DE DIVULGACIÓN CIENTÍFICA, TECNOLÓGICA Y CULTURAL [Internet]. 2023 [citado 12 de abril de 2024];7(2711–3817):5. Disponible en: http://hdl.handle.net/11371/6059
Wyczykier G. Senderos de la transición energética: el hidrógeno verde en la era del cambio climático. Revista Temas Sociológicos [Internet]. 2022 [citado 12 de abril de 2024];31(0719–6458):453–84. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=8823170 DOI: https://doi.org/10.29344/07196458.31.3164
Ministerio de Minas y Energía. minenergia.gov.co. 2021 [citado 10 de abril de 2024]. p. 54 Hoja de ruta para el hidrógeno en Colombia. Disponible en: https://www.minenergia.gov.co/es/micrositios/enlace-ruta-hidrogeno/
Muñoz Soto BJ, Zúliga Calderón JA. Informe de Vigilancia Tecnológica: Producción de hidrógeno verde para descarbonizar las actividades económicas en Costa Rica [Internet]. Universidad de Costa Rica; 2022 [citado 12 de abril de 2024]. Disponible en: https://www.kerwa.ucr.ac.cr/bitstream/handle/10669/86773/Informe de Vigilancia Tecnológica_Producción de hidrógeno verde para descarbonizar las actividades económicas en Costa Rica.pdf?sequence=1
Rupérez Cerqueda M. OBS Business School. 2022 [citado 4 de septiembre de 2023]. Informe OBS: Mercado del Hidrógeno 2022. Disponible en: https://www.obsbusiness.school/actualidad/informes-de-investigacion/informe-obs-mercado-del-hidrogeno-2022
IEA. Global Hydrogen Review 2022 [Internet]. 2022 [citado 5 de septiembre de 2023]. Disponible en: https://www.iea.org/reports/global-hydrogen-review-2022/executive-summary
Crespo Garay C. National Geographic. 2022 [citado 12 de marzo de 2024]. Hacia la transición energética: el nuevo método para producir hidrógeno de forma industrial. Disponible en: https://www.nationalgeographic.es/medio-ambiente/2022/04/hacia-la-transicion-energetica-el-nuevo-metodo-para-producir-hidrogeno-de-forma-industrial
IEA. Global Hydrogen Review 2021 [Internet]. 2021 [citado 5 de septiembre de 2023]. Disponible en: https://www.iea.org/reports/global-hydrogen-review-2021/executive-summary
Arcos JMM, Santos DMF. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, Vol 3, Pages 25-46 [Internet]. 3 de febrero de 2023 [citado 4 de septiembre de 2023];3(1):25–46. Disponible en: https://www.mdpi.com/2673-5628/3/1/2/htm
Incer-Valverde J, Korayem A, Tsatsaronis G, Morosuk T. “Colors” of hydrogen: Definitions and carbon intensity. Energy Convers Manag [Internet]. 1 de septiembre de 2023 [citado 19 de septiembre de 2023];291:117294. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0196890423006404 DOI: https://doi.org/10.1016/j.enconman.2023.117294
Dash SK, Chakraborty S, Elangovan D. A Brief Review of Hydrogen Production Methods and Their Challenges. Energies 2023, Vol 16, Page 1141 [Internet]. 20 de enero de 2023 [citado 3 de septiembre de 2023];16(3):1141. Disponible en: https://www.mdpi.com/1996-1073/16/3/1141/htm DOI: https://doi.org/10.3390/en16031141
Brijaldo MH, Castillo C, Pérez G. Principales Rutas en la Producción de Hidrógeno. Ingeniería y Competitividad [Internet]. 4 de julio de 2021 [citado 14 de mayo de 2024];23(2):e30211155. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11155 DOI: https://doi.org/10.25100/iyc.v23i2.11155
Ozcan H, El-Emam RS, Amini Horri B. Thermochemical looping technologies for clean hydrogen production – Current status and recent advances. J Clean Prod [Internet]. 1 de enero de 2023 [citado 5 de enero de 2023];382:135295. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0959652622048697 DOI: https://doi.org/10.1016/j.jclepro.2022.135295
Wang Z, Gong Z, Turap Y, Wang Y, Zhang Z, Wang W. Renewable hydrogen production from biogas using iron-based chemical looping technology. Chemical Engineering Journal [Internet]. 1 de febrero de 2022 [citado 5 de enero de 2023];429:132192. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S1385894721037712 DOI: https://doi.org/10.1016/j.cej.2021.132192
Das S, Biswas A, Tiwary CS, Paliwal M. Hydrogen production using chemical looping technology: A review with emphasis on H2 yield of various oxygen carriers. Int J Hydrogen Energy [Internet]. 1 de agosto de 2022 [citado 4 de enero de 2023];47(66):28322–52. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319922028051 DOI: https://doi.org/10.1016/j.ijhydene.2022.06.170
Márquez P. J, Márquez OP, Martínez Y, Márquez K, Weinhold E, Ortíz R. Electroquimienergía y cambio climático: Una revisión. infoANALÍTICA [Internet]. 2022 [citado 28 de diciembre de 2022];10(1):43–82. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=8380347&info=resumen&idioma=ENG DOI: https://doi.org/10.26807/ia.v10i1.229
Osorio HC, Babativa JH, Alonso JA. Estudio sobre producción de H2 con hidroelectricidad para una economía de hidrógeno en Colombia. Ingeniería y Competitividad [Internet]. 9 de junio de 2011 [citado 14 de mayo de 2024];12(1):31–42. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/2700 DOI: https://doi.org/10.25100/iyc.v12i1.2700
Panić I, Cuculić A, Ćelić J. Color-Coded Hydrogen: Production and Storage in Maritime Sector. Journal of Marine Science and Engineering 2022, Vol 10, Page 1995 [Internet]. 14 de diciembre de 2022 [citado 4 de septiembre de 2023];10(12):1995. Disponible en: https://www.mdpi.com/2077-1312/10/12/1995/htm DOI: https://doi.org/10.3390/jmse10121995
CIC energiGUNE. Métodos de producción de hidrógeno y sus colores [Internet]. 2022 [citado 23 de mayo de 2023]. Disponible en: https://cicenergigune.com/es/blog/metodos-produccion-hidrogeno-colores
Ahmed S, Aitani A, Rahman F, Al-Dawood A, Al-Muhaish F. Decomposition of hydrocarbons to hydrogen and carbon. Appl Catal A Gen. 15 de mayo de 2009;359(1–2):1–24. DOI: https://doi.org/10.1016/j.apcata.2009.02.038
Rojas J, Zhai S, Sun E, Haribal V, Marin-Quiros S, Sarkar A, et al. Technoeconomics and carbon footprint of hydrogen production. Int J Hydrogen Energy [Internet]. 11 de enero de 2024 [citado 4 de septiembre de 2023];49:59–74. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319923032718 DOI: https://doi.org/10.1016/j.ijhydene.2023.06.292
Hwang JJ. Sustainability study of hydrogen pathways for fuel cell vehicle applications. Renewable and Sustainable Energy Reviews. 1 de marzo de 2013;19:220–9. DOI: https://doi.org/10.1016/j.rser.2012.11.033
Boretti A, Banik BK. Advances in Hydrogen Production from Natural Gas Reforming. Advanced Energy and Sustainability Research [Internet]. 1 de noviembre de 2021 [citado 24 de abril de 2023];2(11):2100097. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/aesr.202100097 DOI: https://doi.org/10.1002/aesr.202100097
Song Y, Han K, Wang D yang. Thermodynamic analysis of fossil fuels reforming for fuel cell application. Int J Hydrogen Energy [Internet]. 7 de agosto de 2020 [citado 10 de septiembre de 2023];45(39):20232–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319919343988 DOI: https://doi.org/10.1016/j.ijhydene.2019.11.175
Ersoz A, Olgun H, Ozdogan S. Reforming options for hydrogen production from fossil fuels for PEM fuel cells. J Power Sources. 9 de marzo de 2006;154(1):67–73. DOI: https://doi.org/10.1016/j.jpowsour.2005.02.092
Megia PJ, Vizcaino AJ, Calles JA, Carrero A. Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy and Fuels [Internet]. 21 de octubre de 2021 [citado 10 de septiembre de 2023];35(20):16403–15. Disponible en: https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.1c02501 DOI: https://doi.org/10.1021/acs.energyfuels.1c02501
Energy.gov [Internet]. [citado 10 de septiembre de 2023]. Hydrogen Production: Natural Gas Reforming. Disponible en: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming
Agarwal R. Transition to a Hydrogen-Based Economy: Possibilities and Challenges. Sustainability [Internet]. 30 de noviembre de 2022 [citado 4 de septiembre de 2023];14(23):15975. Disponible en: https://www.mdpi.com/2071-1050/14/23/15975 DOI: https://doi.org/10.3390/su142315975
Al-Qahtani A, Parkinson B, Hellgardt K, Shah N, Guillen-Gosalbez G. Uncovering the true cost of hydrogen production routes using life cycle monetisation. Appl Energy. 1 de enero de 2021;281:115958. DOI: https://doi.org/10.1016/j.apenergy.2020.115958
Shah M, Mondal P, Nayak AK, Bordoloi A. Hydrogen from Natural Gas. En: Sustainable Utilization of Natural Resources [Internet]. CRC Press; 2017 [citado 4 de septiembre de 2023]. p. 81–120. Disponible en: https://www.taylorfrancis.com/chapters/edit/10.1201/9781315153292-4/hydrogen-natural-gas-mumtaj-shah-prasenjit-mondal-ameeya-kumar-nayak-ankur-bordoloi DOI: https://doi.org/10.1201/9781315153292-4
Arcos JMM, Santos DMF. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, Vol 3, Pages 25-46 [Internet]. 3 de febrero de 2023 [citado 4 de septiembre de 2023];3(1):25–46. Disponible en: https://www.mdpi.com/2673-5628/3/1/2/htm DOI: https://doi.org/10.3390/gases3010002
Norouzi N, Fani M. Hydrogen Industry: A Technical, Economic, and Market Analysis Overview. Trends Journal of Sciences Research [Internet]. 24 de septiembre de 2021 [citado 4 de septiembre de 2023];1(1):59–84. Disponible en: https://www.scipublications.com/journal/index.php/ojc/article/view/106 DOI: https://doi.org/10.31586/ojc.2021.106
Wheelock Gutiérrez FE. A comparative study of low-emissions hydrogen production processes: Technical limitations and future trends [Internet]. 2023 [citado 4 de septiembre de 2023]. Disponible en: https://aaltodoc.aalto.fi:443/handle/123456789/121669
Abdalla AM, Abdelrehim O, Wei B, Wang X, Azad AK, Dawood MK. Hydrogen production technologies: Conventional processes. En: Hydrogen Economy [Internet]. Elsevier; 2023 [citado 3 de septiembre de 2023]. p. 381–96. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780323995146000042 DOI: https://doi.org/10.1016/B978-0-323-99514-6.00004-2
Dagle RA, Dagle V, Bearden MD, Holladay JD, Krause TR, Ahmed S. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products [Internet]. Richland, WA (United States); 2017 nov [citado 20 de septiembre de 2023]. Disponible en: http://www.osti.gov/servlets/purl/1411934/ DOI: https://doi.org/10.2172/1411934
Lui J, Chen WH, Tsang DCW, You S. A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies. Renewable and Sustainable Energy Reviews. 1 de diciembre de 2020;134:110365. DOI: https://doi.org/10.1016/j.rser.2020.110365
Saraceno E, Ruocco C, Palma V. A Review of Coal and Biomass Hydrogasification: Process Layouts, Hydrogasifiers, and Catalysts. Catalysts 2023, Vol 13, Page 417 [Internet]. 15 de febrero de 2023 [citado 12 de marzo de 2024];13(2):417. Disponible en: https://www.mdpi.com/2073-4344/13/2/417/htm DOI: https://doi.org/10.3390/catal13020417
Song H, Yang G, Xue P, Li Y, Zou J, Wang S, et al. Recent development of biomass gasification for H2 rich gas production. Applications in Energy and Combustion Science. 1 de junio de 2022;10:100059. DOI: https://doi.org/10.1016/j.jaecs.2022.100059
Okere CJ, Sheng JJ. Review on clean hydrogen generation from petroleum reservoirs: Fundamentals, mechanisms, and field applications. Int J Hydrogen Energy. 30 de junio de 2023; DOI: https://doi.org/10.1016/j.ijhydene.2023.06.135
Castiblanco O, Cárdenas DJ. Producción de hidrógeno y su perspectiva en Colombia: una revisión. Gestión y Ambiente [Internet]. 1 de julio de 2020 [citado 19 de septiembre de 2023];23(2):299–311. Disponible en: https://revistas.unal.edu.co/index.php/gestion/article/view/86466 DOI: https://doi.org/10.15446/ga.v23n2.86466
Khan A, Niazi MBK, Ansar R, Jahan Z, Javaid F, Ahmad R, et al. Thermochemical conversion of agricultural waste to hydrogen, methane, and biofuels: A review. Fuel [Internet]. noviembre de 2023;351:128947. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0016236123015600 DOI: https://doi.org/10.1016/j.fuel.2023.128947
Wang Q. Hydrogen production. En: Handbook of Climate Change Mitigation [Internet]. Springer US; 2012 [citado 3 de septiembre de 2023]. p. 1091–130. Disponible en: https://link-springer-com.bd.univalle.edu.co/referenceworkentry/10.1007/978-1-4419-7991-9_29 DOI: https://doi.org/10.1007/978-1-4419-7991-9_29
Stiegel GJ, Ramezan M. Hydrogen from coal gasification: An economical pathway to a sustainable energy future. Int J Coal Geol. 17 de enero de 2006;65(3–4):173–90. DOI: https://doi.org/10.1016/j.coal.2005.05.002
Acar C, Dincer I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energy. 2 de enero de 2014;39(1):1–12. DOI: https://doi.org/10.1016/j.ijhydene.2013.10.060
Dincer I. Green methods for hydrogen production. Int J Hydrogen Energy [Internet]. 1 de enero de 2012 [citado 26 de enero de 2023];37(2):1954–71. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319911019823 DOI: https://doi.org/10.1016/j.ijhydene.2011.03.173
Shiva Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Reports [Internet]. 1 de noviembre de 2022 [citado 27 de mayo de 2023];8:13793–813. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2352484722020625 DOI: https://doi.org/10.1016/j.egyr.2022.10.127
Li P. Photosynthetic hydrogen production bacteria breeding technologies. En: Waste to Renewable Biohydrogen [Internet]. Elsevier; 2021 [citado 5 de enero de 2023]. p. 179–99. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780128216590000058 DOI: https://doi.org/10.1016/B978-0-12-821659-0.00005-8
Fabregas E, Huertas BR. Desarrollo de un modelo de funcionamiento de electrolizadores alcalinos autopresurizados, para la optimización de su sistema de control [Internet]. Universitat Politècnica de Catalunya; 2020 [citado 24 de marzo de 2023]. Disponible en: https://upcommons.upc.edu/handle/2117/332806
Funk JE. Thermochemical hydrogen production: past and present. Int J Hydrogen Energy. 1 de marzo de 2001;26(3):185–90. DOI: https://doi.org/10.1016/S0360-3199(00)00062-8
Lladó ML, Jubert AH. Trabajo útil y su relación con la variación de energía de Gibbs. Educación química [Internet]. 2011 [citado 31 de marzo de 2023];22(3):271–6. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-893X2011000300013&lng=es&nrm=iso&tlng=es DOI: https://doi.org/10.1016/S0187-893X(18)30144-7
Santos DMF, Sequeira CAC, Figueiredo JL. Hydrogen production by alkaline water electrolysis. Quim Nova [Internet]. 2013 [citado 2 de enero de 2024];36(8):1176–93. Disponible en: https://www.scielo.br/j/qn/a/KyQvF9DMHK6ZJXyL5zQNy7N/?format=html&lang=en DOI: https://doi.org/10.1590/S0100-40422013000800017
Martinez-Burgos WJ, de Souza Candeo E, Pedroni Medeiros AB, Cesar de Carvalho J, Oliveira de Andrade Tanobe V, Soccol CR, et al. Hydrogen: Current advances and patented technologies of its renewable production. J Clean Prod [Internet]. 1 de marzo de 2021 [citado 5 de enero de 2023];286:124970. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0959652620350149 DOI: https://doi.org/10.1016/j.jclepro.2020.124970
Rashid M, Khaloofah M, Mesfer A, Naseem H, Danish M, Al Mesfer MK. Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. researchgate.net [Internet]. 2015 [citado 6 de julio de 2023];(3):2249–8958. Disponible en: https://www.researchgate.net/profile/Hamid-Naseem/publication/273125977_Hydrogen_Production_by_Water_Electrolysis_A_Review_of_Alkaline_Water_Electrolysis_PEM_Water_Electrolysis_and_High_Temperature_Water_Electrolysis/links/54f810100cf28d6dec9fec25/Hydroge
Sánchez M. Desarrollo y validación de un modelo para la simulación de sistemas de electrólisis alcalina para la producción de hidrógeno a partir de energías renovables [Internet]. Universidad Politécnica de Madrid; 2019 [citado 24 de marzo de 2023]. Disponible en: http://oa.upm.es/62567/
Amores E, Rodríguez J, Oviedo J, De Lucas-Consuegra A. Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects. Open Engineering [Internet]. 1 de enero de 2017 [citado 2 de agosto de 2023];7(1):141–52. Disponible en: https://www.degruyter.com/document/doi/10.1515/eng-2017-0020/html DOI: https://doi.org/10.1515/eng-2017-0020
Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis – A review. Mater Sci Energy Technol. 1 de diciembre de 2019;2(3):442–54. DOI: https://doi.org/10.1016/j.mset.2019.03.002
Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy [Internet]. 22 de abril de 2013 [citado 31 de julio de 2023];38(12):4901–34. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319913002607 DOI: https://doi.org/10.1016/j.ijhydene.2013.01.151
Ayers K. High efficiency PEM water electrolysis: enabled by advanced catalysts, membranes, and processes. Curr Opin Chem Eng [Internet]. 1 de septiembre de 2021 [citado 31 de diciembre de 2022];33:100719. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211339821000514 DOI: https://doi.org/10.1016/j.coche.2021.100719
Li R, Li Y, Yang P, Wang D, Xu H, Wang B, et al. Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. Journal of Energy Chemistry [Internet]. 1 de junio de 2021 [citado 31 de diciembre de 2022];57:547–66. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2095495620306033 DOI: https://doi.org/10.1016/j.jechem.2020.08.040
Burton NA, Padilla RV, Rose A, Habibullah H. Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renewable and Sustainable Energy Reviews [Internet]. 1 de enero de 2021 [citado 31 de diciembre de 2022];135:110255. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S136403212030544X DOI: https://doi.org/10.1016/j.rser.2020.110255
Song J, Wei C, Huang ZF, Liu C, Zeng L, Wang X, et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem Soc Rev [Internet]. 7 de abril de 2020 [citado 26 de diciembre de 2023];49(7):2196–214. Disponible en: https://pubs.rsc.org/en/content/articlehtml/2020/cs/c9cs00607a DOI: https://doi.org/10.1039/C9CS00607A
Liu L. Platinum group metal free nano-catalysts for proton exchange membrane water electrolysis. Curr Opin Chem Eng [Internet]. 1 de diciembre de 2021 [citado 31 de diciembre de 2022];34:100743. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2211339821000757 DOI: https://doi.org/10.1016/j.coche.2021.100743
Angeles-Olvera Z, Crespo-Yapur A, Rodríguez O, Cholula-Díaz JL, Martínez LM, Videa M. Nickel-Based Electrocatalysts for Water Electrolysis. Energies 2022, Vol 15, Page 1609 [Internet]. 22 de febrero de 2022 [citado 31 de diciembre de 2022];15(5):1609. Disponible en: https://www.mdpi.com/1996-1073/15/5/1609/htm DOI: https://doi.org/10.3390/en15051609
Chen Z, Wei W, Song L, Ni BJ. Hybrid Water Electrolysis: A New Sustainable Avenue for Energy-Saving Hydrogen Production. Sustainable Horizons [Internet]. 1 de enero de 2022 [citado 28 de diciembre de 2022];1:100002. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S277273782100002X DOI: https://doi.org/10.1016/j.horiz.2021.100002
Pal DB, Singh A, Bhatnagar A. A review on biomass based hydrogen production technologies. Int J Hydrogen Energy [Internet]. 8 de enero de 2022 [citado 4 de enero de 2023];47(3):1461–80. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319921041562 DOI: https://doi.org/10.1016/j.ijhydene.2021.10.124
Martino M, Ruocco C, Meloni E, Pullumbi P, Palma V. Main Hydrogen Production Processes: An Overview. Catalysts 2021, Vol 11, Page 547 [Internet]. 25 de abril de 2021 [citado 30 de enero de 2023];11(5):547. Disponible en: https://www.mdpi.com/2073-4344/11/5/547/htm DOI: https://doi.org/10.3390/catal11050547
Singla S, Shetti NP, Basu S, Mondal K, Aminabhavi TM. Hydrogen production technologies - Membrane based separation, storage and challenges. J Environ Manage [Internet]. 15 de enero de 2022 [citado 4 de enero de 2023];302:113963. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0301479721020259 DOI: https://doi.org/10.1016/j.jenvman.2021.113963
Laurinavichene T, Tekucheva D, Laurinavichius K, Tsygankov A. Utilization of distillery wastewater for hydrogen production in one-stage and two-stage processes involving photofermentation. Enzyme Microb Technol [Internet]. 1 de marzo de 2018 [citado 16 de enero de 2024];110:1–7. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141022917302156 DOI: https://doi.org/10.1016/j.enzmictec.2017.11.009
Hu B, Li Y, Zhu S, Zhang H, Jing Y, Jiang D, et al. Evaluation of biohydrogen yield potential and electron balance in the photo-fermentation process with different initial pH from starch agricultural leftover. Bioresour Technol [Internet]. 1 de junio de 2020 [citado 28 de enero de 2024];305:122900. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0960852420301693 DOI: https://doi.org/10.1016/j.biortech.2020.122900
Lu C, Jing Y, Zhang H, Lee DJ, Tahir N, Zhang Q, et al. Biohydrogen production through active saccharification and photo-fermentation from alfalfa. Bioresour Technol. 1 de mayo de 2020;304:123007. DOI: https://doi.org/10.1016/j.biortech.2020.123007
Al-Mohammedawi HH, Znad H, Eroglu E. Improvement of photofermentative biohydrogen production using pre-treated brewery wastewater with banana peels waste. Int J Hydrogen Energy. 28 de enero de 2019;44(5):2560–8. DOI: https://doi.org/10.1016/j.ijhydene.2018.11.223
Yang Y, Bu J, Tiong YW, Xu S, Zhang J, He Y, et al. Enhanced thermophilic dark fermentation of hydrogen production from food waste by Fe-modified biochar. Environ Res. 1 de marzo de 2024;244:117946. DOI: https://doi.org/10.1016/j.envres.2023.117946
Cieciura-Włoch W, Borowski S, Domański J. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by nitrogen and phosphorus supplementation. Bioresour Technol. 1 de noviembre de 2021;340:125622. DOI: https://doi.org/10.1016/j.biortech.2021.125622
Singh S, Sarma PM, Lal B. Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline. Int J Hydrogen Energy. 18 de marzo de 2014;39(9):4206–14. DOI: https://doi.org/10.1016/j.ijhydene.2013.12.179
Karaosmanoglu Gorgec F, Karapinar I. Biohydrogen production from hydrolyzed waste wheat by dark fermentation in a continuously operated packed bed reactor: The effect of hydraulic retention time. Int J Hydrogen Energy. 1 de enero de 2019;44(1):136–43. DOI: https://doi.org/10.1016/j.ijhydene.2018.08.155
Ren N, Guo W, Liu B, Cao G, Ding J. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol [Internet]. 1 de junio de 2011 [citado 19 de julio de 2023];22(3):365–70. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0958166911000851 DOI: https://doi.org/10.1016/j.copbio.2011.04.022
Eroglu E, Melis A. Photobiological hydrogen production: Recent advances and state of the art. Bioresour Technol [Internet]. 1 de septiembre de 2011 [citado 16 de enero de 2024];102(18):8403–13. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0960852411003683 DOI: https://doi.org/10.1016/j.biortech.2011.03.026
Putatunda C, Behl M, Solanki P, Sharma S, Bhatia SK, Walia A, et al. Current challenges and future technology in photofermentation-driven biohydrogen production by utilizing algae and bacteria. Int J Hydrogen Energy. 30 de junio de 2023;48(55):21088–109. DOI: https://doi.org/10.1016/j.ijhydene.2022.10.042
Schumann C, Fernández Méndez J, Berggren G, Lindblad P. Novel concepts and engineering strategies for heterologous expression of efficient hydrogenases in photosynthetic microorganisms. Front Microbiol [Internet]. 12 de julio de 2023 [citado 27 de agosto de 2023];14:1179607. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1179607/full DOI: https://doi.org/10.3389/fmicb.2023.1179607
Ivanenko AA, Laikova AA, Zhuravleva EA, Shekhurdina SV, Vishnyakova AV, Kovalev AA, et al. Biological production of hydrogen: From basic principles to the latest advances in process improvement. Int J Hydrogen Energy [Internet]. 15 de febrero de 2024 [citado 7 de enero de 2024];55:740–55. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319923059244 DOI: https://doi.org/10.1016/j.ijhydene.2023.11.179
Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, et al. Green technology for sustainable biohydrogen production (waste to energy): A review. Science of The Total Environment [Internet]. 1 de agosto de 2020 [citado 3 de febrero de 2024];728:138481. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S004896972031994X DOI: https://doi.org/10.1016/j.scitotenv.2020.138481
Nagarajan D, Dong C Di, Chen CY, Lee DJ, Chang JS. Biohydrogen production from microalgae—Major bottlenecks and future research perspectives. Biotechnol J [Internet]. 1 de mayo de 2021 [citado 3 de febrero de 2024];16(5):2000124. Disponible en: https://onlinelibrary-wiley-com.bd.univalle.edu.co/doi/full/10.1002/biot.202000124 DOI: https://doi.org/10.1002/biot.202000124
Kosourov S, Böhm M, Senger M, Berggren G, Stensjö K, Mamedov F, et al. Photosynthetic hydrogen production: Novel protocols, promising engineering approaches and application of semi‐synthetic hydrogenases. Physiol Plant [Internet]. 2 de octubre de 2021 [citado 2 de febrero de 2024];173(2):555–67. Disponible en: https://onlinelibrary-wiley-com.bd.univalle.edu.co/doi/full/10.1111/ppl.13428 DOI: https://doi.org/10.1111/ppl.13428
Kamshybayeva GK, Kossalbayev BD, Sadvakasova AK, Kakimova AB, Bauenova MO, Zayadan BK, et al. Genetic engineering contribution to developing cyanobacteria-based hydrogen energy to reduce carbon emissions and establish a hydrogen economy. Int J Hydrogen Energy. 7 de febrero de 2024;54:491–511. DOI: https://doi.org/10.1016/j.ijhydene.2022.12.342
Kossalbayev BD, Yilmaz G, Sadvakasova AK, Zayadan BK, Belkozhayev AM, Kamshybayeva GK, et al. Biotechnological production of hydrogen: Design features of photobioreactors and improvement of conditions for cultivating cyanobacteria. Int J Hydrogen Energy. 2 de enero de 2024;49:413–32. DOI: https://doi.org/10.1016/j.ijhydene.2023.09.001
Bozieva AM, Khasimov MK, Voloshin RA, Sinetova MA, Kupriyanova E V., Zharmukhamedov SK, et al. New cyanobacterial strains for biohydrogen production. Int J Hydrogen Energy [Internet]. 8 de marzo de 2023 [citado 3 de febrero de 2024];48(21):7569–81. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319922055148 DOI: https://doi.org/10.1016/j.ijhydene.2022.11.198
Jensen LS, Kaul C, Juncker NB, Thomsen MH, Chaturvedi T. Biohydrogen Production in Microbial Electrolysis Cells Utilizing Organic Residue Feedstock: A Review. Energies 2022, Vol 15, Page 8396 [Internet]. 10 de noviembre de 2022 [citado 3 de febrero de 2024];15(22):8396. Disponible en: https://www.mdpi.com/1996-1073/15/22/8396/htm DOI: https://doi.org/10.3390/en15228396
Saravanan A, Karishma S, Kumar PS, Yaashikaa PR, Jeevanantham S, Gayathri B. Microbial electrolysis cells and microbial fuel cells for biohydrogen production: current advances and emerging challenges. Biomass Conversion and Biorefinery 2020 13:10 [Internet]. 27 de agosto de 2020 [citado 3 de febrero de 2024];13(10):8403–23. Disponible en: https://link-springer-com.bd.univalle.edu.co/article/10.1007/s13399-020-00973-x DOI: https://doi.org/10.1007/s13399-020-00973-x
Lazar D, Lu ZH, Yumnam P, Debnath P. A Review on Mathematical Modeling of Different Biological Methods of Hydrogen Production. Hydrogen 2023, Vol 4, Pages 881-916 [Internet]. 1 de noviembre de 2023 [citado 3 de febrero de 2024];4(4):881–916. Disponible en: https://www.mdpi.com/2673-4141/4/4/53/htm DOI: https://doi.org/10.3390/hydrogen4040053
Murugaiyan J, Narayanan A, Naina Mohamed S. An overview of microbial electrolysis cell configuration: Challenges and prospects on biohydrogen production. Int J Energy Res [Internet]. 1 de noviembre de 2022 [citado 3 de febrero de 2024];46(14):20811–27. Disponible en: https://onlinelibrary-wiley-com.bd.univalle.edu.co/doi/full/10.1002/er.8494 DOI: https://doi.org/10.1002/er.8494
Jayabalan T, Matheswaran M, Preethi V, Naina Mohamed S. Enhancing biohydrogen production from sugar industry wastewater using metal oxide/graphene nanocomposite catalysts in microbial electrolysis cell. Int J Hydrogen Energy [Internet]. 6 de marzo de 2020 [citado 3 de febrero de 2024];45(13):7647–55. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0360319919333828 DOI: https://doi.org/10.1016/j.ijhydene.2019.09.068
Wang L, Linowski K, Liu H. Scalable membrane-less microbial electrolysis cell with multiple compact electrode assemblies for high performance hydrogen production. Chemical Engineering Journal. 15 de febrero de 2023;454:140257. DOI: https://doi.org/10.1016/j.cej.2022.140257
San-Martín MI, Sotres A, Alonso RM, Díaz-Marcos J, Morán A, Escapa A. Assessing anodic microbial populations and membrane ageing in a pilot microbial electrolysis cell. Int J Hydrogen Energy. 28 de junio de 2019;44(32):17304–15. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.287
Batlle-Vilanova P, Puig S, Gonzalez-Olmos R, Vilajeliu-Pons A, Bañeras L, Balaguer MD, et al. Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. Int J Hydrogen Energy. 16 de enero de 2014;39(3):1297–305. DOI: https://doi.org/10.1016/j.ijhydene.2013.11.017
Dai H, Yang H, Liu X, Jian X, Liang Z. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel. 15 de junio de 2016;174:251–6. DOI: https://doi.org/10.1016/j.fuel.2016.02.013
Accepted 2024-08-08
Published 2024-08-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).