Contenido principal del artículo

Autores

Las características físicas y químicas del hidrógeno lo han convertido en un vector energético prometedor con grandes aplicaciones en celdas de combustibles, así como materia prima para la participación en diversos procesos químicos a nivel de industrial. Una de las fuentes renovables de energía utilizada para la obtención de hidrógeno es la biomasa. Se han empleado varias moléculas modelo de biomasa para la generación de hidrógeno, las cuales incluyen principalmente alcoholes, carbohidratos, ácidos carboxílicos, alcanos entre otras. Estas moléculas son transformadas mediante rutas termoquímicas, bioquímicas, fotoquímicas, electroquímicas, catalíticas, etc., con el objetivo de alcanzar el mayor rendimiento a hidrógeno. En cada una de ellas, numerosas condiciones de reacción son utilizadas, sustratos y catalizadores son empleados. En esta revisión se abordarán algunos de los tópicos anteriormente mencionados y se vislumbraran algunas prospectivas y futuras investigaciones que pueden llevarse a acabo en el campo de la generación de hidrógeno.

1.
Brijaldo MH, Castillo C, Pérez G. Principales Rutas en la Producción de Hidrógeno. inycomp [Internet]. 4 de julio de 2021 [citado 29 de marzo de 2024];23(2):e30211155. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11155

(1) Hernández J. Los Elementos Químicos. Rev Pliegos Yuste. 2006;4(1):57–68.

Available from: http://www.pliegosdeyuste.eu/n4pliegos/juanhernandez.pdf.

(2) Junyent Guinart E. Hidrógeno Estudio de sus propiedades y diseño de una planta de licuado [Master’s Thesis]. Barcelona: Universidad Politécnica de Cataluña; 2011. Available from: http://hdl.handle.net/2099.1/13884.

(3) Keçebaşa A, Kayfeci M. Chapter 1 - Hydrogen properties. In: Calise F, D’Accadia MD, Santarelli M, Lanzini A, Ferrero D, editors. Solar Hydrogen Production Processes, Systems and Technologies. Elsevier Inc.; 2019. p. 3–29. Available from: https://doi.org/10.1016/B978-0-12-814853-2.00001-1.

(4) Gupta RB, Basile A, Veziroglu TN, editors. Compendium of Hydrogen Energy - Volume 2: Hydrogen Storage, Distribution and Infrastructure. 1st ed. Woodhead Publishing; 2015. 438 p. Available from: https://doi.org/10.1016/C2014-0-02673-1.

(5) Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, et al. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy. 2015;144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045.

(6) House JE, House KA. Chapter 7 - Hydrogen. In: Descriptive Inorganic Chemistry. 3rd ed. Elsevier Inc.; 2016. p. 111–21. Available from: https://doi.org/10.1016/B978-0-12-804697-5.00007-5.

(7) Gene D, Salvador M. La Economía del Hidrógeno como Solución al Problema de la Estabilización del Clima Mundial. Acta Univ. 2006;16(1):5–14. https://doi.org/10.15174/au.2006.192.

(8) Mansilla C, Bourasseau C, Cany C, Guinot B, Duigou A Le, Lucchese P. Hydrogen applications: Overview of the key economic issues and perspectives. In: Azzaro-Pantel C, editors. Hydrogen Supply Chain: Design, Deployment and Operation. Elsevier Inc.; 2018. p. 271–292. http://doi.org/10.1016/B978-0-12-811197-0.00007-5.

(9) Maio P, González J, López CA. Hidrógeno: Una revolución para impulsar los sectores de energía y transporte sostenible en América Latina. HINICIO S.A. Latin America [Internet]. 2020;1–7. Available from: https://www.hinicio.com/inc/uploads/2019/12/hidrogeno-revolucion-Latam-2020-esp.pdf.

(10) Burgdorf T, Lenz O, Buhrke T, Van Der Linden E, Jones AK, Albracht SPJ, Friedrich B. [NiFe]-hydrogenases of Ralstonia eutropha H16: Modular enzymes for oxygen-tolerant biological hydrogen oxidation. Journal of Molecular Microbiology and Biotechnology. 2005;10(2–4):181–196. https://doi.org/10.1159/000091564.

(11) Lamba JJ, Hillestad M, Rytter E, Bock R, Nordgård ASR, Lien KM, et al. Chapter three - Traditional Routes for Hydrogen Production and Carbon Conversion. In: Lamb JJ, Pollet BG, editors. Hydrogen, Biomass and Bioenergy Integration

Pathways for Renewable Energy Applications Hydrogen and Fuel Cells Primers. Elsevier Ltd.; 2020. p. 21–53. Available from: https://doi.org/10.1016/B978-0-08-102629-8.00003-7.

(12) Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY. Review of catalytic supercritical water gasification for hydrogen production from biomass. Renewable and Sustainable Energy Reviews. 2010;14(1):334–343. https://doi.org/10.1016/j.rser.2009.08.012.

(13) Karunadasa HI, Chang CJ, Long JR. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature. 2010;464:1329–1333. https://doi.org/10.1038/nature08969.

(14) Miguel VA, Rodríguez S, Ángel M. Desarrollo de miméticos de dihidrogenasas modulables por metales de transición para la produccion de hidrogeno en ausencia de agentes reductores moleculares. Jóvenes en la Ciencia. 2017;3(1):231–234.

(15) Heidenreich S, Foscolo PU. New concepts in biomass gasification. Progress in Energy and Combustion Science. 2015;46:72–95. https://doi.org/10.1016/j.pecs.2014.06.002.

(16) Heidenreich S, Müller M, Foscolo PU. Advanced Biomass Gasification New Concepts for Efficiency Increase and Product Flexibility. Elsevier Inc.; 2016. Available from: https://doi.org/10.1016/C2015-0-01777-4.

(17) D’Orazio A, Rapagnà S, Foscolo PU, Gallucci K, Nacken M, Heidenreich S, Di Carlo A., Dell’Era A. Gas conditioning in H2 rich syngas production by biomass steam gasification: Experimental comparison between three innovative ceramic filter candles. Int J Hydrogen Energy. 2015;40(23):7282–7290. https://doi.org/10.1016/j.ijhydene.2015.03.169.

(18) Barbarias I, Lopez G, Alvarez J, Artetxe M, Arregi A, Bilbao J, et al. A sequential process for hydrogen production based on continuous HDPE fast pyrolysis and in-line steam reforming. Chem Eng J. 2016;296:191–198. https://doi.org/10.1016/j.cej.2016.03.091.

(19) Dincer I, Zamfirescu C. Chapter 7 - Other Hydrogen Production Methods. In: Sustainable Hydrogen Production. Elsevier Inc.; 2016. p. 411–39. Available from: https://doi.org/10.1016/B978-0-12-801563-6.00007-8.

(20) Ni M, Leung MKH, Sumathy K, Leung DYC. Potential of renewable hydrogen production for energy supply in Hong Kong. Int J Hydrogen Energy. 2006;31(10):1401–1412. https://doi.org/10.1016/j.ijhydene.2005.11.005.

(21) Zee DZ, Chantarojsiri T, Long JR, Chang CJ. Metal-Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen. Acc Chem Res. 2015;48(7):2027–2036. https://doi.org/10.1021/acs.accounts.5b00082.

(22) Asensio P. Hidrógeno y pila de combustible. Fundación de la Energía de la Comunidad de Madrid [en línea]. Available from: http://www.instalacionesindustriales.es/documentos/divrenovables/cuaderno_HIDROGENO.pdf.

(23) Gorbunov MY, Kolber ZS, Falkowski PG. Measuring photosynthetic parameters in individual algal cells by Fast Repetition Rate fluorometry. Photosynth Res. 1999;62:141–153. https://doi.org/10.1023/a:1006360005033.

(24) Lamb JJ, Eaton-Rye JJ, Hohmann-Marriott MF. An LED-based fluorometer for chlorophyll quantification in the laboratory and in the field. Photosynth Res. 2012;114(1):59–68. https://doi.org/10.1007/s11120-012-9777-y.

(25) Sáinz Casas D. Adaptación de un motor de combustión interna alternativo de gasolina para su funcionamiento con hidrógeno como combustible. Aplicaciones energética y de automoción [Dissertation]. Pamplona: Universidad Pública de Navarra; 2014. Available from: https://hdl.handle.net/2454/20048.

(26) Nahar G, Mote D, Dupont V. Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective. Renewable and Sustainable Energy Reviews. 2017;76:1032–1052. https://doi.org/10.1016/j.rser.2017.02.031.

(27) Park Y, Namioka T, Sakamoto S, Min TJ, Roh SA, Yoshikawa K. Optimum operating conditions for a two-stage gasification process fueled by polypropylene by means of continuous reactor over ruthenium catalyst. Fuel Processing Technology. 2010;91(8):951–957. https://doi.org/10.1016/j.fuproc.2009.10.014.

(28) Chen HL, Lee HM, Chen SH, Chao Y, Chang MB. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects. Applied Catalysis B: Environmental. 2008;85(1–2):1–9. https://doi.org/10.1016/j.apcatb.2008.06.021.

(29) IEA. Energy Technology Essentials: Hydrogen Production & Distribution. [Internet] Paris: IEA. 2007. Available from: https://www.iea.org/reports/iea-energy-technology-essentials-hydrogen-production-distribution.

(30) Nishimura H, Sako Y. Purification and characterization of the oxygen-thermostable hydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum camini. J Biosci Bioeng. 2009;108(4):299–303. https://doi.org/10.1016/j.jbiosc.2009.04.017.

(31) Faravelli T, Goldaniga A, Ranzi E, Dietz A, Davis M, Schmidt LD. Partial oxidation of hydrocarbons: An experimental and kinetic modeling study. Stud Surf Sci Catal. 1998;199:575-580. https://doi.org/10.1016/s0167-2991(98)80493-x.

(32) Xu D, Dong L, Ren J. Chapter 2 - Introduction of Hydrogen Routines. In: Scipioni A, Manzardo A, Ren J, editors. Hydrogen Economy Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability. Elsevier Ltd.; 2017. p. 35–

Available from: https://doi.org/10.1016/B978-0-12-811132-1.00002-X.

(33) Barreto ALR. Estudio del efecto de la radiación en moléculas de agua con Geant4. Bogotá: Universidad de los Andes; 2007. Available from: https://repositorio.uniandes.edu.co/bitstream/handle/1992/26052/u295919.pdf?sequence=1.

(34) Saxena RC, Adhikari DK, Goyal HB. Biomass-based energy fuel through biochemical routes: A review. Renew Sustain Energy Rev. 2009;13(1):167–178. https://doi.org/10.1016/j.rser.2007.07.011.

(35) Zhang L, Zhang L, Li D. Enhanced dark fermentative hydrogen production by zero-valent iron activated carbon micro-electrolysis. Int J Hydrogen Energy. 2015;40(36):12201–12208. https://doi.org/10.1016/j.ijhydene.2015.07.106.

(36) Liu BF, Jin YR, Cui QF, Xie GJ, Wu YN, Ren NQ. Photo-fermentation hydrogen production by Rhodopseudomonas sp. nov. strain A7 isolated from the sludge in a bioreactor. Int J Hydrogen Energy. 2015;40(28):8661–8668. https://doi.org/10.1016/j.ijhydene.2015.05.001.

(37) Xia D, Yan X, Su X, Zhao W. Analysis of the three-phase state in biological hydrogen production from coal. Int J Hydrogen Energy. 2020;45(41):21112–21122. https://doi.org/10.1016/j.ijhydene.2020.05.139.

(38) Zhang L, Wang YZ, Zhao T, Xu T. Hydrogen production from simultaneous saccharification and fermentation of lignocellulosic materials in a dual-chamber microbial electrolysis cell. Int J Hydrogen Energy. 2019;44(57):30024–30030. https://doi.org/10.1016/j.ijhydene.2019.09.191.

(39) Wang Y, Tahir N, Cao W, Zhang Q, Lee DJ. Grid columnar flat panel photobioreactor with immobilized photosynthetic bacteria for continuous photofermentative hydrogen production. Bioresour Technol. 2019;291:121806. https://doi.org/10.1016/j.biortech.2019.121806.

(40) Wang R, Wen H, Cui C. Bio-hydrogen production by a new isolated strain Rhodopseudomonas sp. WR-17 using main metabolites of three typical dark fermentation type. Int J Hydrogen Energy. 2019;44(46):25145–25150. https://doi.org/10.1016/j.ijhydene.2019.04.143.

(41) Wang Y, Wang D, Chen F, Yang Q, Ni BJ, Wang Q, Sun J, Li X, Liu Y. Nitrate addition improves hydrogen production from acidic fermentation of waste activated sludge. Chemosphere. 2019;235:814–824. https://doi.org/10.1016/j.chemosphere.2019.06.117.

(42) Lazaro CZ, Hitit ZY, Hallenbeck PC. Optimization of the yield of dark microaerobic production of hydrogen from lactate by Rhodopseudomonas palustris. Bioresour Technol. 2017;245:123–131. https://doi.org/10.1016/j.biortech.2017.08.207.

(43) Srivastava N, Srivastava M, Kushwaha D, Gupta VK, Manikanta A, Ramteke PW, Mishra PK. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresour Technol. 2017;238:552–558. https://doi.org/10.1016/j.biortech.2017.04.077.

(44) Cai J, Guan Y, Jia T, Yang J, Hu Y, Li P, Duan Y, Zhang L, Yu P. Hydrogen production from high slat medium by co-culture of Rhodovulum sulfidophilum and dark fermentative microflora. Int J Hydrogen Energy. 2018;43(24):10959–10966. https://doi.org/10.1016/j.ijhydene.2018.05.014.

(45) An Q, Wang JL, Wang YT, Lin ZL, Zhu MJ. Investigation on hydrogen production from paper sludge without inoculation and its enhancement by Clostridium thermocellum. Bioresour Technol. 2018;263(April):120–127. https://doi.org/10.1016/j.biortech.2018.04.105.

(46) Sagir E, Alipour S, Elkahlout K, Koku H, Gunduz U, Eroglu I, Yucel M. Biological hydrogen production from sugar beet molasses by agar immobilized R. capsulatus in a panel photobioreactor. Int J Hydrogen Energy. 2018;43(32):14987–14995. https://doi.org/10.1016/j.ijhydene.2018.06.052.

(47) Wang Y, Xi B, Li M, Jia X, Wang X, Xu P, Zhao Y. Hydrogen production performance from food waste using piggery anaerobic digested residues inoculum in long-term systems. Int J Hydrogen Energy. 2020;45(58):33208–33217. https://doi.org/10.1016/j.ijhydene.2020.09.057.

(48) Wannapokin A, Cheng YT, Wu SZ, Hsieh PH, Hung CH. Potential of bio-hydrogen production by C. pasteurianum co-immobilized with selected nano-metal particles. Int J Hydrogen Energy. 2020;46(20):11337–11344. https://doi.org/10.1016/j.ijhydene.2020.05.238.

(49) Li Z, Fang A, Cui H, Ding J, Liu B, Xie G, Ren N, Xing D. Synthetic bacterial consortium enhances hydrogen production in microbial electrolysis cells and anaerobic fermentation. Chem Eng J. 2020;(December):127986. https://doi.org/10.1016/j.cej.2020.127986.

(50) Lertsriwong S, Glinwong C. Newly-isolated hydrogen-producing bacteria and biohydrogen production by Bacillus coagulans MO11 and Clostridium beijerinckii CN on molasses and agricultural wastewater. Int J Hydrogen Energy. 2020;45(51):26812–26821. https://doi.org/10.1016/j.ijhydene.2020.07.032.

(51) Cieciura-Włoch W, Borowski S, Domański J. Dark fermentative hydrogen production from hydrolyzed sugar beet pulp improved by iron addition. Bioresour Technol. 2020;314:123713. https://doi.org/10.1016/j.biortech.2020.123713.

(52) Penner SS. Steps toward the hydrogen economy. Energy. 2006;31(1):33–43. https://doi.org/10.1016/j.energy.2004.04.060.

(53) Arregi A, Amutio M, Lopez G, Bilbao J, Olazar M. Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Convers Manag. 2018;165(January):696–719. https://doi.org/10.1016/j.enconman.2018.03.089.

(54) Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis – A review. Mater Sci Energy Technol. 2019;2(3):442–454. https://doi.org/10.1016/j.mset.2019.03.002.

(55) Saucedo MA, Lim JY, Dennis JS, Scott SA. CO2-gasification of a lignite coal in the presence of an iron-based oxygen carrier for chemical-looping combustion. Fuel. 2014;127:186–201. https://doi.org/10.1016/j.fuel.2013.07.045.

(56) Bohn CD, Cleeton JP, Müller CR, Chuang SY, Scott SA, Dennis JS. Stabilizing iron oxide used in cycles of reduction and oxidation for hydrogen production. Energy and Fuels. 2010;24(7):4025–4033. https://doi.org/10.1021/ef100199f.

(57) Murugan A, Thursfield A, Metcalfe IS. A chemical looping process for hydrogen production using iron-containing perovskites. Energy Environ Sci. 2011;4(11):4639–4649. https://doi.org/10.1039/c1ee02142g.

(58) Dueso C, Thompson C, Metcalfe I. High-stability, high-capacity oxygen carriers: Iron oxide-perovskite composite materials for hydrogen production by chemical looping. Appl Energy. 2015;157:382–390. https://doi.org/10.1016/j.apenergy.2015.05.062.

(59) Orfila M, Linares M, Molina R, Botas JÁ, Sanz R, Marugán J. Perovskite materials for hydrogen production by thermochemical water splitting. Int J Hydrogen Energy. 2016;41(42):19329–19338. https://doi.org/10.1016/j.ijhydene.2016.07.041.

(60) Shen Y, Lua AC. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition. J Colloid Interface Sci. 2016;462:48–55. Available from: https://doi.org/10.1016/j.jcis.2015.09.050.

(61) Qiao ZA, Huo QS. Chapter 15 - Synthetic Chemistry of the Inorganic Ordered Porous Materials. In: Xu R, Xu Y, editors. Modern Inorganic Synthetic Chemistry. 2nd ed. Elsevier B.V.; 2017. p. 389–428. Available from: https://doi.org/10.1016/B978-0-444-63591-4.00015-X.

(62) Singh H, Yadav R, Farooqui SA, Dudnyk O, Sinha AK. Nanoporous nickel oxide catalyst with uniform Ni dispersion for enhanced hydrogen production from organic waste. Int J Hydrogen Energy. 2019;44(36):19573–19584. https://doi.org/10.1016/j.ijhydene.2019.05.203.

(63) Figen HE, Baykara SZ. Hydrogen production by partial oxidation of methane over Co based, Ni and Ru monolithic catalysts. Int J Hydrogen Energy. 2015;40(24):7439–7451. https://doi.org/10.1016/j.ijhydene.2015.02.109.

(64) Żukowski W, Berkowicz G. Hydrogen production through the partial oxidation of methanol using N2O in a fluidised bed of an iron-chromium catalyst. Int J Hydrogen Energy. 2017;42(47):28247–28253. https://doi.org/10.1016/j.ijhydene.2017.09.135.

(65) Zardin L, Perez-Lopez OW. Hydrogen production by methane decomposition over Co-Al mixed oxides derived from hydrotalcites: Effect of the catalyst activation with H2 or CH4. Int J Hydrogen Energy. 2017;42(12):7895–7907. https://doi.org/10.1016/j.ijhydene.2017.02.153.

(66) Gao N, Han Y, Quan C. Study on steam reforming of coal tar over Ni–Co/ceramic foam catalyst for hydrogen production: Effect of Ni/Co ratio. Int J Hydrogen Energy. 2018;43(49):22170–22186. https://doi.org/10.1016/j.ijhydene.2018.10.119.

(67) Nabgan W, Tuan Abdullah TA, Mat R, Nabgan B, Triwahyono S, Ripin A. Hydrogen production from catalytic steam reforming of phenol with bimetallic nickel-cobalt catalyst on various supports. Appl Catal A Gen. 2016;527:161–170. https://doi.org/10.1016/j.apcata.2016.08.033.

(68) Liu T, Yu Z, Li G, Guo S, Shan J, Li C, Fang Y. Performance of potassium-modified Fe2O3/Al2O3 oxygen Carrier in coal-direct chemical looping hydrogen generation. Int J Hydrogen Energy. 2018;43(42):19384–19395. https://doi.org/10.1016/j.ijhydene.2018.08.089.

(69) Yu Z, Liu T, Li C, Guo S, Zhou X, Chen Y, Fang Y, Zhao J. Coal direct chemical looping hydrogen production with K-Fe-Al composite oxygen carrier. Int J Greenh Gas Control. 2018;75(September 2017):24–31. https://doi.org/10.1016/j.ijggc.2018.02.010.

(70) Lin CY, Leu HJ, Lee KH. Hydrogen production from beverage wastewater via dark fermentation and room-temperature methane reforming. Int J Hydrogen Energy. 2016;41(46):21736–21746. https://doi.org/10.1016/j.ijhydene.2016.07.028.

(71) Dincer I, Rosen MA. Chapter 17 - Exergy analyses of hydrogen production systems. In: Exergy Energy, Environment and Sustainable Development. Elsevier Ltd.; 2021. p. 459–78. Available from: https://doi.org/10.1016/B978-0-12-824372-5.00017-8.

(72) Garcia G, Arriola E, Chen WH, De Luna MD. A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy. 2021;217:119384. https://doi.org/10.1016/j.energy.2020.119384.

(73) Xin Y, Sun B, Zhu X, Yan Z, Zhao X, Sun X. Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations. Appl Energy. 2017;206(July):126–133. https://doi.org/10.1016/j.apenergy.2017.08.055.

(74) Zhang J, Li X, Chen H, Qi M, Zhang G, Hu H, Ma X. Hydrogen production by catalytic methane decomposition: Carbon

materials as catalysts or catalyst supports. Int J Hydrogen Energy. 2017;42(31):19755–19775. https://doi.org/10.1016/j.ijhydene.2017.06.197.

(75) Pinilla JL, Lázaro MJ, Suelves I, Moliner R. Formation of hydrogen and filamentous carbon over a Ni-Cu-Al2O3 catalyst through ethane decomposition. Appl Catal A Gen. 2011;394(1–2):220–227. https://doi.org/10.1016/j.apcata.2011.01.005.

(76) Torres D, Pinilla JL, Suelves I. Non-oxidative decomposition of propane: Ni-Cu/Al2O3 catalyst for the production of CO2-free hydrogen and high-value carbon nanofibers. J Environ Chem Eng. 2021;9(1):105022. https://doi.org/10.1016/j.jece.2020.105022.

(77) Ramasubramanian V, Ramsurn H, Price GL. Hydrogen production by catalytic decomposition of methane over Fe based bi-metallic catalysts supported on CeO2–ZrO2. Int J Hydrogen Energy. 2020;45(21):12026–12036. https://doi.org/10.1016/j.ijhydene.2020.02.170.

(78) Pudukudy M, Yaakob Z, Takriff MS. Corrigendum to “Methane decomposition over Pd promoted Ni/MgAl2O4 catalysts for the production of COx free hydrogen and multiwalled carbon nanotubes”. Appl Surf Sci. 2020;504(July 2019):143498. https://doi.org/10.1016/j.apsusc.2019.07.240.

(79) Ogihara H, Imai N, Kurokawa H. Decomposition and coupling of methane over Pd–Au/Al2O3 catalysts to form COx-free hydrogen and C2 hydrocarbons. Int J Hydrogen Energy. 2020;45(58):33612–33622. https://doi.org/10.1016/j.ijhydene.2020.09.136.

(80) Lamb KE, Dolan MD, Kennedy DF. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification. Int J Hydrogen Energy. 2019;44(7):3580–3593. https://doi.org/10.1016/j.ijhydene.2018.12.024.

(81) Yu Y, Gan YM, Huang C, Lu ZH, Wang X, Zhang R, Feng G. Ni/La2O3 and Ni/MgO–La2O3 catalysts for the decomposition of NH3 into hydrogen. Int J Hydrogen Energy. 2020;45(33):16528–16539. https://doi.org/10.1016/j.ijhydene.2020.04.127.

(82) Brijaldo MH, Caytuero AE, Martínez JJ, Rojas H, Passos FB. Hydrogen production from acetic acid decomposition as bio-oil model molecule over supported metal catalysts. Int J Hydrogen Energy. 2020;45(53):28732–28751. https://doi.org/10.1016/j.ijhydene.2020.07.205.

(83) Sneka-Płatek O, Kaźmierczak K, Jędrzejczyk M, Sautet P, Keller N, Michel C, Ruppert AM. Understanding the influence of the composition of the Ag[sbnd]Pd catalysts on the selective formic acid decomposition and subsequent levulinic acid hydrogenation. Int J Hydrogen Energy. 2020;45(35):17339–17353. https://doi.org/10.1016/j.ijhydene.2020.0

180.

(84) Wang J, Cao J, Ma Y, Li X, Xiaokaiti P, Hao X, Yu T, Abudula A, Guan G. Decomposition of formic acid for hydrogen production over metal doped nanosheet-like MoC1−x catalysts. Energy Convers Manag. 2017;147:166–173. https://doi.org/10.1016/j.enconman.2017.05.054.

(85) Bulushev DA, Zacharska M, Guo Y, Beloshapkin S, Simakov A. CO-free hydrogen production from decomposition of formic acid over Au/Al2O3 catalysts doped with potassium ions. Catal. Commun. 2017;92:86–89. https://doi.org/10.1016/j.catcom.2017.01.011.

(86) Bull SR. Hydrogen Production by Photoprocesses. In: International Renewable Energy Conference Honolulu. Hawaii: Solar Energy Research Institute; 1988. p. 1–14.

(87) Bashiri R, Mohamed NM, Kait CF, Sufian S. Hydrogen production from water photosplitting using Cu/TiO2 nanoparticles: Effect of hydrolysis rate and reaction medium. Int J Hydrogen Energy. 2015;40(18):6021–6037. https://doi.org/10.1016/j.ijhydene.2015.03.019.

(88) Chang CJ, Wei YH, Huang KP. Photocatalytic hydrogen production by flower-like graphene supported ZnS composite photocatalysts. Int J Hydrogen Energy. 2017;42(37):23578–23586. https://doi.org/10.1016/j.ijhydene.2017.04.219.

(89) Chang CJ, Huang KL, Chen JK, Chu KW, Hsu MH. Improved photocatalytic hydrogen production of ZnO/ZnS based photocatalysts by Ce doping. J Taiwan Inst Chem Eng. 2015;55:82–89. https://doi.org/10.1016/j.jtice.2015.04.024.

(90) Tay Q, Wang X, Zhao X, Hong J, Zhang Q, Xu R, Chen Z. Enhanced visible light hydrogen production via a multiple heterojunction structure with defect-engineered g-C3N4 and two-phase anatase/brookite TiO2. J Catal. 2016;342:55–62. https://doi.org/10.1016/j.jcat.2016.07.007.

(91) Wu BH, Liu WT, Chen TY, Perng TP, Huang JH, Chen LJ. Plasmon-enhanced photocatalytic hydrogen production on Au/TiO2 hybrid nanocrystal arrays. Nano Energy. 2016;27:412–419. https://doi.org/10.1016/j.nanoen.2016.07.029.

(92) Wu Z, Su Y, Yu J, Xiao W, Sun L, Lin C. Enhanced photoelectrocatalytic hydrogen production activity of SrTiO3-TiO2 hetero-nanoparticle modified TiO2 nanotube arrays. Int J Hydrogen Energy. 2015;40(31):9704–9712. https://doi.org/10.1016/j.ijhydene.2015.06.036.

(93) Sfaelou S, Pop LC, Monfort O, Dracopoulos V, Lianos P. Mesoporous WO3 photoanodes for hydrogen production by water splitting and PhotoFuelCell operation. Int J Hydrogen Energy. 2016;41(14):5902–5907. https://doi.org/10.1016/j.ijhydene.2016.02.063.

(94) Monfort O, Pop LC, Sfaelou S, Plecenik T, Roch T, et. al. Photoelectrocatalytic hydrogen production by water splitting

using BiVO4 photoanodes. Chem Eng J. 2016;286:91–97. https://doi.org/10.1016/j.cej.2015.10.043.

(95) Gultom NS, Abdullah H, Kuo DH. Effects of graphene oxide and sacrificial reagent for highly efficient hydrogen production with the costless Zn(O,S) photocatalyst. Int J Hydrogen Energy. 2019;44(56):29516–29528. https://doi.org/10.1016/j.ijhydene.2019.08.066.

(96) Li W, Han J, Wu Y, Xiang Q, Qiao Y, Feng C, Chen Z, Deng X. In-situ synthesis of CdS quantum dots on CdCO3 cubic structure for enhanced photocatalytic hydrogen production performance. Mater Lett. 2019;255:126560. https://doi.org/10.1016/j.matlet.2019.126560.

(97) Jeon H jin, Chung YM. Hydrogen production from formic acid dehydrogenation over Pd/C catalysts: Effect of metal and support properties on the catalytic performance. Appl Catal B Environ. 2017;210:212–222. https://doi.org/10.1016/j.apcatb.2017.03.070.

(98) Duan S, Zhang S, Chang S, Meng S, Fan Y, Zheng X, Chen S. Efficient photocatalytic hydrogen production from formic acid on inexpensive and stable phosphide/Zn3In2S6 composite photocatalysts under mild conditions. Int J Hydrogen Energy. 2019;44(39):21803–21820. https://doi.org/10.1016/j.ijhydene.2019.06.179.

(99) Akyüz D, Zunain Ayaz RM, Yılmaz S, Uğuz Ö, Sarıoğlu C, Karaca F, Özkaya AR, Koca A. Metal chalcogenide based photocatalysts decorated with heteroatom doped reduced graphene oxide for photocatalytic and photoelectrochemical hydrogen production. Int J Hydrogen Energy. 2019;44(34):18836–18847. https://doi.org/10.1016/j.ijhydene.2019.04.049.

(100) Lin X, Wang J. Green synthesis of well dispersed TiO2/Pt nanoparticles photocatalysts and enhanced photocatalytic activity towards hydrogen production. Int J Hydrogen Energy. 2019;44(60):31853–31859. https://doi.org/10.1016/j.ijhydene.2019.10.062.

(101) Iervolino G, Vaiano V, Sannino D, Rizzo L, Palma V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl Catal B Environ. 2017;207:182–194. https://doi.org/10.1016/j.apcatb.2017.02.008.

(102) Carrasco-Jaim OA, Torres-Martínez LM, Moctezuma E. Enhanced photocatalytic hydrogen production of AgMO3 (M = Ta, Nb, V) perovskite materials using CdS and NiO as co-catalysts. J Photochem Photobiol A Chem. 2018;358:167–176. https://doi.org/10.1016/j.jphotochem.2018.03.021.

(103) Han J, Liu Y, Dai F, Zhao R, Wang L. Fabrication of CdSe/CaTiO3 nanocomposties in aqueous solution for improved photocatalytic hydrogen production. Appl Surf Sci. 2018;459:520–526. https://doi.org/10.1016/j.apsusc.2018.08.026.

(104) Markovskaya DV, Kozlova EA, Gerasimov EY, Bukhtiyarov AV, Kozlov DV. New photocatalysts based on Cd0.3Zn0.7S and Ni(OH)2 for hydrogen production from ethanol aqueous solutions under visible light. Appl Catal A Gen. 2018;563:170–176. https://doi.org/10.1016/j.apcata.2018.07.002.

(105) Seçer A, Küçet N, Fakı E, Hasanoğlu A. Comparison of co–gasification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production. Int J Hydrogen Energy. 2018;43(46):21269–21278. https://doi.org/10.1016/j.ijhydene.2018.09.144.

(106) Czylkowski D, Hrycak B, Miotk R, Jasiński M, Dors M, Mizeraczyk J. Hydrogen production by conversion of ethanol using atmospheric pressure microwave plasmas. Int J Hydrogen Energy. 2015;40(40):14039–14044. https://doi.org/10.1016/j.ijhydene.2015.06.101.

(107) Zhang N, Li H, Yu K, Zhu Z. Differently structured MoS2 for the hydrogen production application and a mechanism investigation. J Alloys Compd. 2016;685:65–9. https://doi.org/10.1016/j.jallcom.2016.05.228.

(108) Zhang H, Wang Y, Wu Z, Leung DYC. An ammonia electrolytic cell with NiCu/C as anode catalyst for hydrogen production. Energy Procedia. 2017;142:1539–1544. https://doi.org/10.1016/j.egypro.2017.12.605.

(109) Tsoncheva T, Tsyntsarski B, Ivanova R, Spassova I, Kovacheva D, et. al. NixZn1-xFe2O4 modified activated carbons from industrial waste as catalysts for hydrogen production. Microporous Mesoporous Mater. 2019;285:96–104. https://doi.org/10.1016/j.micromeso.2019.04.051.

(110) Ge Z, Guo L, Jin H. Hydrogen production by non-catalytic partial oxidation of coal in supercritical water: The study on reaction kinetics. Int J Hydrogen Energy. 2017;42(15):9660–9666. https://doi.org/10.1016/j.ijhydene.2017.02.018.

(111) Wang Y, Wu J, Xue S, Wang J, Zhang Y, Tang Y. Hydrogen production by low-temperature oxidation of coal: Exploration of the relationship between aliphatic C–H conversion and molecular hydrogen release. Int J Hydrogen Energy. 2017;42(39):25063–25073. https://doi.org/10.1016/j.ijhydene.2017.08.040.

(112) Seyitliyev D, Kholikov K, Grant B, San O, Er AO. Laser-induced hydrogen generation from graphite and coal. Int J Hydrogen Energy. 2017;42(42):26277–26288. https://doi.org/10.1016/j.ijhydene.2017.08.149.

(113) Siriwardane R, Poston J, Monazam E, Richards G. Production of hydrogen by steam oxidation of calcium ferrite reduced with various coals. Int J Hydrogen Energy. 2019;44(14):7158–7167. https://doi.org/10.1016/j.ijhydene.2019.01.238.

(114) Çokay E. Hydrogen gas production from food wastes by electrohydrolysis using a statical design approach. Int J Hydrogen Energy. 2018;43(23):10555–10561.

https://doi.org/10.1016/j.ijhydene.2018.01.079.

(115) Moreno LG, Vargas CE. La tecnología del hidrógeno, una oportunidad estratégica para la perdurabilidad del sector energético en Colombia [Master’s Thesis]. Bogotá: Universidad Nuestra Señora del Rosario; 2013. p.149. Available from: http://repository.urosario.edu.co/bitstream/handle/10336/4294/79952447-2013.pdf?sequence=3.

(116) Sugiarto Y, Sunyoto NMS, Zhu M, Jones I, Zhang D. Effect of biochar in enhancing hydrogen production by mesophilic anaerobic digestion of food wastes: The role of minerals. Int J Hydrogen Energy. 2021;46(5):3695–3703. https://doi.org/10.1016/j.ijhydene.2020.10.256.

(117) Rodriguez A, Rache LY, Brijaldo MH, Silva LPC, Esteves LM. Common reactions of furfural to scalable process of residual biomass. Cienc en Desarro. 2020;11(1):63–80. https://doi.org/10.19053/01217488.v11.n1.2020.10973.

(118) Martinez-Burgos WJ, de Souza Candeo E, Pedroni Medeiros AB, Cesar de Carvalho J, Oliveira de Andrade Tanobe V, Soccol CR, Sydney EB. Hydrogen: Current advances and patented technologies of its renewable production. J Clean Prod. 2020;286:124970. https://doi.org/10.1016/j.jclepro.2020.124970.

(119) Stern AG. A new sustainable hydrogen clean energy paradigm. Int J Hydrogen Energy. 2018;43(9):4244–4255. https://doi.org/10.1016/j.ijhydene.2017.12.180.

(120) Sgobbi A, Nijs W, De Miglio R, Chiodi A, Gargiulo M, Thiel C. How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. Int J Hydrogen Energy. 2016;41(1):19–35. https://doi.org/10.1016/j.ijhydene.2015.09.004.

(121) Acar C, Dincer I. 3.1 Hydrogen Production. In: Dincer I, editor. Comprehensive Energy Systems - Volume 3. 1st ed. Elsevier Inc.; 2018. p. 1–40. Available from: https://doi.org/10.1016/B978-0-12-809597-3.00304-7.

(122) Paramesh K, Chandrasekhar T. Improvement of photobiological hydrogen production in Chlorococcum minutum using various oxygen scavengers. Int J Hydrogen Energy. 2020;45(13):7641–7646. https://doi.org/10.1016/j.ijhydene.2019.05.216.

(123) Poudyal RS, Tiwari I, Koirala AR, Masukawa H, Inoue K, Tomo T, et al. 10 - Hydrogen production using photobiological methods. In: Subramani V, Basile A, Veziroğlu TN, editors. Compendium of Hydrogen Energy Hydrogen Production and Purification - Volume 1. Elsevier Ltd.; 2015. p. 289–317. Available from: https://doi.org/10.1016/B978-1-78242-361-4.00010-8.

(124) Lamb JJ, Rytter E, Hillestad M, Lien KM, Burheim OS, Pollet BG. Chapter four - Emerging Technology for Hydrogen and Bioenergy Production. In: Lamb JJ, Pollet BG, editors. Hydrogen, Biomass and Bioenergy Integration Pathways for Renewable Energy Applications. Elsevier Ltd.; 2020. p. 55–71. Available from: https://doi.org/10.1016/B978-0-

-102629-8.00004-9.

(125) El Hajj Chehade AM, Daher EA, Assaf JC, Riachi B, Hamd W. Simulation and optimization of hydrogen production by steam reforming of natural gas for refining and petrochemical demands in Lebanon. Int J Hydrogen Energy. 2020;45(58):33235–33247. https://doi.org/10.1016/j.ijhydene.2020.09.077.

(126) Deng L, Adams TA. Comparison of steel manufacturing off-gas utilization methods via life cycle analysis. J Clean Prod. 2020;277:123568. https://doi.org/10.1016/j.jclepro.2020.123568.

(127) Singh S, Jain S, Ps V, Tiwari AK, Nouni MR, Pandey JK, Goel S. Hydrogen: A sustainable fuel for future of the transport sector. Renew Sustain Energy Rev. 2015;51:623–633. https://doi.org/10.1016/j.rser.2015.06.040.

(128) Dincer I, Acar C. Innovation in hydrogen production. Int J Hydrogen Energy. 2017;42(22):14843–14864. https://doi.org/10.1016/j.ijhydene.2017.04.107.

(129) Seelam PK, Rathnayake B, Pitkäaho S, Turpeinen E, Keiski RL. Chapter 1 - Overview on recent developments on hydrogen energy: Production, catalysis, and sustainability. In: Basile A, Napporn TW, editors. Current Trends and Future Developments on (Bio-) Membranes Membrane Systems for Hydrogen Production. Elsevier Inc.; 2020. p. 3–32. Available from: https://doi.org/10.1016/B978-0-12-817110-3.00001-1.

(130) Safari F, Dincer I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production. Energy Convers Manag. 2020;205:112182. https://doi.org/10.1016/j.enconman.2019.112182.

(131) Akhlaghi N, Najafpour-Darzi G. A comprehensive review on biological hydrogen production. Int J Hydrogen Energy. 2020;45(43):22492–22512. https://doi.org/10.1016/j.ijhydene.2020.06.182.

(132) Tasleem S, Tahir M. Recent progress in structural development and band

engineering of perovskites materials for photocatalytic solar hydrogen production: A review. Int J Hydrogen Energy 2020;45(38):19078–19111. https://doi.org/10.1016/j.ijhydene.2020.05.090.

(133) Lepage T, Kammoun M, Schmetz Q, Richel A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment. Biomass and Bioenergy. 2020;144:105920, 2021. https://doi.org/10.1016/j.biombioe.2020.105920.