Contenido principal del artículo

Autores

Introducción: La ingeniería de rehabilitación para la marcha humana es un campo de rápido crecimiento que automatiza las intervenciones terapéuticas, reduciendo el esfuerzo físico requerido de los terapeutas. Esto permite que los terapeutas se concentren en aplicar los protocolos clínicos para el entrenamiento físico y el re-aprendizaje motor. Los sistemas de rehabilitación robótica asistida también permiten la evaluación de la recuperación motora mediante la medición de parámetros clave como los patrones de fuerza, la dinámica de interacción y los movimientos angulares.


Objetivo: El objetivo de este estudio es proporcionar una revisión descriptiva de las plataformas robóticas diseñadas para la rehabilitación y asistencia de la marcha humana.


Métodos: Dado el rápido avance de la tecnología de exoesqueletos, se hizo un énfasis particular en incorporar los estudios más recientes. Sin embargo, debido a la complejidad del tema, también se consideró un marco temporal de investigación más amplio, abarcando los últimos 14 años. La revisión siguió una estrategia de búsqueda integral en múltiples bases de datos, incluyendo Springer Nature, IEEE/ASME, Taylor & Francis, Google Scholar, MDPI, Scopus, Frontiers, Elsevier, ResearchGate, ScienceDirect, Sage y John Wiley & Sons, con el objetivo de identificar todas las tecnologías relevantes relacionadas con los exoesqueletos de miembros inferiores.


Resultados: La robótica de rehabilitación y asistencia es un campo multidisciplinario que abarca áreas como la biomecánica, la interacción humano-máquina, las estrategias de control, el diseño de actuadores y la integración de sensores. Este estudio contribuye con una tabla de clasificación que resume las plataformas robóticas de rehabilitación más representativas, destacando sus características y diferencias mediante variables comparativas.


Conclusión: El análisis descriptivo muestra que los entrenadores de marcha sobre terreno son los sistemas más avanzados y ampliamente utilizados en la robótica de rehabilitación, destacando su efectividad para abordar las complejas necesidades de la rehabilitación de la marcha, lo que los convierte en un foco crítico para la investigación futura.

Sergey González Mejía, Universidad del Valle

Asistente de Docencia

Laboratorios de Control I y II

Escuela de Ingeniería Eléctrica y Electrónica - Univalle

1.
González Mejía S, Ramírez Scarpetta JM. Avances en rehabilitación robótica para la recuperación de miembros inferiores y asistencia al caminar. inycomp [Internet]. 25 de febrero de 2025 [citado 11 de marzo de 2025];27(1):e-30314594. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/14594

Meng W, Liu Q, Zhou Z, Ai Q, Sheng B, Xie SS. Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics [Internet]. 2015 Oct;31:132–45. Available from: http://dx.doi.org/10.1016/j.mechatronics.2015.04.005 DOI: https://doi.org/10.1016/j.mechatronics.2015.04.005

Chen B, Ma H, Qin LY, Gao F, Chan KM, Law SW, et al. Recent developments and challenges of lower extremity exoskeletons. J Orthop Transl [Internet]. 2016 Apr;5:26–37. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2214031X15000716 DOI: https://doi.org/10.1016/j.jot.2015.09.007

Díaz I, Gil JJ, Sánchez E. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Vol. 2011, Journal of Robotics. 2011. p. 1–11. DOI: https://doi.org/10.1155/2011/759764

Galvez J, Reinkensmeyer D. Robotics for Gait Training After Spinal Cord Injury. Top Spinal Cord Inj Rehabil [Internet]. 2005 Oct;11(2):18–33. Available from: http://archive.scijournal.com/doi/abs/10.1310/DAMJ-G43A-16EH-1BDK DOI: https://doi.org/10.1310/DAMJ-G43A-16EH-1BDK

Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev [Internet]. 2000;37(6):693–700. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11321005

Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj [Internet]. 2008 Jan;22(7–8):625–32. Available from: http://www.tandfonline.com/doi/full/10.1080/02699050801941771

West RG. Powered gait orthosis and method of utilizing same [Internet]. Vol. 1, US Patent US006689075B2. United States; 2006. Available from: https://patents.google.com/patent/US6689075B2/en

P&S Mechanics Co. Ltd. WALKBOT Exoskeleton gait training robot [Internet]. 2024 [cited 2024 Aug 1]. Available from: https://www.walkbot.co.kr/en/sub/product-introduction.php

Wyss D, Bartenbach V, Marchal-Crespo L, Pennycott A, Riener R, Vallery H. Cooperative Control Strategies for the Lokomat [Internet]. 2012 [cited 2015 Sep 30]. Available from: https://sms.hest.ethz.ch/research/past-research-projects/lower-limb-exoskeletons-and-exosuits/lokomat-gait-rehabilitation-robot.html

Marchal-Crespo L, Riener R. Technology of the Robotic Gait Orthosis Lokomat. In: Reinkensmeyer DJ, Marchal-Crespo L, Dietz V, editors. Neurorehabilitation Technology [Internet]. Cham: Springer International Publishing; 2022. p. 665–81. Available from: https://doi.org/10.1007/978-3-031-08995-4_29 DOI: https://doi.org/10.1007/978-3-031-08995-4_29

Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed ’LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008;22(7–8):625–32. DOI: https://doi.org/10.1080/02699050801941771

Motorika. ReoAmbulator Robotic Gait Training Device [Internet]. 2012 [cited 2015 Sep 30]. Available from: https://exoskeletonreport.com/product/reoambulator/#google_vignette

Olmos-Gómez R, Calvo-Muñoz I, Gómez-Conesa A. Treatment with robot-assisted gait trainer Walkbot along with physiotherapy vs. isolated physiotherapy in children and adolescents with cerebral palsy. Experimental study. BMC Neurol [Internet]. 2024 Jul 15;24(1):245. Available from: https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-024-03750-9 DOI: https://doi.org/10.1186/s12883-024-03750-9

González-Mejía S. Partial Assistance Control on a Robotic Platform with an Exoskeleton for the Human Gait Rehabilitation [Internet]. Doctoral thesis, Universidad del Valle; 2023. Available from: https://doi.org/10.17605/OSF.IO/J7XFH

GICI. Industrial Control Research Group - Universidad del Valle [Internet]. 2022 [cited 2022 Aug 14]. Available from: https://gici.univalle.edu.co/

González-Mejía S, Ramírez JM. Gait Assisted Rehabilitation Platform – RUVEM. In: IX Congreso Iberoamericano de Tecnologías de Apoyo a la Discapacidad Iberdiscap [Internet]. Bogotá DC.; 2017. p. 1–8. Available from: https://reasiste.umh.es/portfolio/iberdiscap-2017/

Echeverri EM, González-Mejía S, Ramírez JM, Rosero E. Plataforma de rehabilitación asistida para marcha - RUVEM: Integración de los subsistemas de soporte. In: X Congreso Iberoamericano de Tecnologías de Apoyo a la Discapacidad Iberdiscap [Internet]. Buenos Aires, Argentina; 2019. Available from: https://reasiste.umh.es/portfolio/iberdiscap-2019/

Loaiza A, Rosero E, Ramírez JM. Active body weight support system for lower limb rehabilitation. In: VIII Jornadas AITADIS de Tecnologías de Apoyo a la Discapacidad [Internet]. México; 2018. Available from: https://www.aitadis.org/wp/934-2/

Loaiza AE, Garcia JI, Buitrago JT. Development of a Body Weight Support System Employing Model-Based System Engineering Methodology. Technologies [Internet]. 2024 Jul 23;12(8):118. Available from: https://www.mdpi.com/2227-7080/12/8/118 DOI: https://doi.org/10.3390/technologies12080118

Reinkensmeyer D, Wynne JH, Harkema SJ. A robotic tool for studying locomotor adaptation and rehabilitation. Proc Second Jt 24th Annu Conf Annu Fall Meet Biomed Eng Soc [Engineering Med Biol. 2002;3:2353–4. DOI: https://doi.org/10.1109/IEMBS.2002.1053318

Reinkensmeyer DJ, Aoyagi D, Emken JL, Galvez J a, Ichinose W, Kerdanyan G, et al. Tools for understanding and optimizing robotic gait training. J Rehabil Res Dev. 2006;43(5):657–70. DOI: https://doi.org/10.1682/JRRD.2005.04.0073

Banala SK, Agrawal SK, Scholz JP. Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. 2007 IEEE 10th Int Conf Rehabil Robot ICORR’07. 2007;00(c):401–7. DOI: https://doi.org/10.1109/ICORR.2007.4428456

Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van Der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):379–86. DOI: https://doi.org/10.1109/TNSRE.2007.903919

Beyl P, Van Damme M, Van Ham R, Versluys R, Vanderborght B, Lefeber D. An exoskeleton for gait rehabilitation: Prototype design and control principle. Proc - IEEE Int Conf Robot Autom. 2008;2037–42. DOI: https://doi.org/10.1109/ROBOT.2008.4543506

Pietrusinski M, Cajigas I, Mizikacioglu Y, Goldsmith M, Bonato P, Mavroidis C. Gait rehabilitation therapy using robot generated force fields applied at the pelvis. 2010 IEEE Haptics Symp HAPTICS 2010. 2010;401–7. DOI: https://doi.org/10.1109/HAPTIC.2010.5444624

Surdilovic D, Bernhardt R. STRING-MAN: a new wire robot for gait rehabilitation. IEEE Int Conf Robot Autom 2004 Proceedings ICRA ’04 2004. 2004;2:2031–6. DOI: https://doi.org/10.1109/ROBOT.2004.1308122

Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev [Internet]. 2000;37(6):701–8. Available from: https://pubmed.ncbi.nlm.nih.gov/11321006/

Yano H, Tamefusa S, Tanaka N, Saitou H, Iwata H. Gait rehabilitation system for stair climbing and descending. In: 2010 IEEE Haptics Symposium [Internet]. IEEE; 2010. p. 393–400. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5444627 DOI: https://doi.org/10.1109/HAPTIC.2010.5444627

Schmidt H, Hesse S, Bernhardt R, Krüger J. HapticWalker---a novel haptic foot device. ACM Trans Appl Percept [Internet]. 2005 Apr 1;2(2):166–80. Available from: http://portal.acm.org/ft_gateway.fm?id=1060589&type=pdf&coll=GUIDE&dl=GUIDE&CFID=79479733&CFTOKEN=90387208 DOI: https://doi.org/10.1145/1060581.1060589

Schmidt H. HapticWalker - A novel haptic device for walking simulation. In: Proceedings of the EuroHaptics Conference [Internet]. Munich, Germany; 2004. p. 60–7. Available from: http://portal.acm.org/citation.cfm?doid=1060581.1060589

Chen S, Wang Y, Li S, Wang G, Huang Y, Mao X. Lower limb rehabilitation robot. In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots [Internet]. London: IEEE; 2009. p. 439–43. Available from: https://ieeexplore.ieee.org/document/5173866

Yoon J, Novandy B, Yoon CH, Park KJ. A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains. IEEE/ASME Trans Mechatronics. 2010;15(2):201–15. DOI: https://doi.org/10.1109/TMECH.2010.2040834

Peshkin M, Brown D a., Santos-Munné JJ, Makhlin A, Lewis E, Colgate JE, et al. KineAssist: A robotic overground gait and balance training device. Proc 2005 IEEE 9th Int Conf Rehabil Robot. 2005;2005:241–6. DOI: https://doi.org/10.1109/ICORR.2005.1501094

Bouri M, Stauffer Y, Schmitt C, Allemand Y, Gnemmi S, Clavel R, et al. The WalkTrainerTM: A Robotic system for walking rehabilitation. 2006 IEEE Int Conf Robot Biomimetics, ROBIO 2006. 2006;1616–21. DOI: https://doi.org/10.1109/ROBIO.2006.340186

Goffer A. Gait-locomotor apparatus [Internet]. Google Patents; US7153242, 2006. Available from: http://www.google.com/patents/US7153242

Kawamoto H, Suwoong Lee, Kanbe S, Sankai Y. Power assist method for HAL-3 using EMG-based feedback controller. In: SMC’03 Conference Proceedings 2003 IEEE International Conference on Systems, Man and Cybernetics Conference Theme - System Security and Assurance (Cat No03CH37483) [Internet]. IEEE; 2003. p. 1648–53. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1244649 DOI: https://doi.org/10.1109/ICSMC.2003.1244649

ABLE Human Motion S.L. ABLE Human Motion Exoskeleton | Backed by leading clinical institutions [Internet]. 2022 [cited 2022 Jul 26]. Available from: https://www.ablehumanmotion.com/able-human-motion-exoskeleton/

Pillai M V., Van Engelhoven L, Kazerooni H. Evaluation of a Lower Leg Support Exoskeleton on Floor and Below Hip Height Panel Work. Hum Factors J Hum Factors Ergon Soc [Internet]. 2020 May 9;62(3):489–500. Available from: http://journals.sagepub.com/doi/10.1177/0018720820907752 DOI: https://doi.org/10.1177/0018720820907752

SuitX. Phoenix | suitX [Internet]. 2017 [cited 2022 Jul 26]. Available from: https://www.suitx.com/phoenix-medical-exoskeleton

Allemand Y, Stauffer Y, Clavel R, Brodard R. Design of a new lower extremity orthosis for overground gait training with the WalkTrainer. In: 2009 IEEE International Conference on Rehabilitation Robotics [Internet]. IEEE; 2009. p. 550–5. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5209585 DOI: https://doi.org/10.1109/ICORR.2009.5209585

Kawamoto H, Sankai Y. Power Assist System HAL-3 for Gait Disorder Person. Comput Help people with Spec needs [Internet]. 2002;196–203. Available from: http://link.springer.com/chapter/10.1007/3-540-45491-8_43%5Cnhttp://link.springer.com/chapter/10.1007/3-540-45491-8_43#%5Cnhttp://link.springer.com/content/pdf/10.1007/3-540-45491-8_43.pdf

Seo KH, Lee JJ. The development of two mobile gait rehabilitation systems. IEEE Trans Neural Syst Rehabil Eng. 2009;17(2):156–66. DOI: https://doi.org/10.1109/TNSRE.2009.2015179

Technaid S.L. Robotic Exoskeleton Exo-H3 [Internet]. 2021 [cited 2022 Aug 16]. Available from: https://www.technaid.com/products/robotic-exoskeleton-exo-exoesqueleto-h3/

Exoskeleton Report LLC. Exoskeleton Catalog Archives - Exoskeleton Report [Internet]. 2021 [cited 2022 Jul 26]. Available from: https://exoskeletonreport.com/product-category/exoskeleton-catalog/

Rodríguez-Fernández A, Lobo-Prat J, Font-Llagunes JM. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil [Internet]. 2021 Dec 1;18(1):22. Available from: https://doi.org/10.1186/s12984-021-00815-5 DOI: https://doi.org/10.1186/s12984-021-00815-5

Tijjani I, Kumar S, Boukheddimi M. A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking. Appl Sci [Internet]. 2022 Feb 25;12(5):2395. Available from: https://www.mdpi.com/2076-3417/12/5/2395 DOI: https://doi.org/10.3390/app12052395

Schmitt C, Métrailler P, Al-Khodairy A, Brodard R, Fournier J, Bouri M, et al. The MotionMaker: a Rehabilitation System Combining an Orthosis With Closed Loop Electrical Muscle Stimulation. In: 8 Vienna International Workshop on Functional Electrical Stimulation [Internet]. 2004. p. 117–20. Available from: https://infoscience.epfl.ch/entities/publication/2a6ab0ca-0013-4bbb-a3bd-55d11fb5418b/statistics

Bouri M, Le Gall B, Clavel R. A new concept of parallel robot for rehabilitation and fitness: The Lambda. 2009 IEEE Int Conf Robot Biomimetics, ROBIO 2009. 2009;2503–8. DOI: https://doi.org/10.1109/ROBIO.2009.5420481

Homma K, Fukuda O, Sugawara J, Nagata Y, Usuba M. A wire-driven leg rehabilitation system: development of a 4-DOF experimental system. In: Advanced Intelligent Mechatronics, 2003 AIM 2003 Proceedings 2003 IEEE/ASME International Conference on [Internet]. 2003. p. 908–13. Available from: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1225463%5Cn10.1109/AIM.2003.1225463%5CnA wire-driven leg rehabilitation system-development of a 4-DOF experimental system (2).pdf DOI: https://doi.org/10.1109/AIM.2003.1225463

Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord [Internet]. 2001 May;39(5):252–5. Available from: http://www.nature.com/doifinder/10.1038/sj.sc.3101154 DOI: https://doi.org/10.1038/sj.sc.3101154

Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: A multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80. DOI: https://doi.org/10.1016/j.apmr.2004.08.004

Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66. DOI: https://doi.org/10.1093/ptj/85.1.52

Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13. DOI: https://doi.org/10.1177/1545968308326632

Westlake KP, Patten C. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J Neuroeng Rehabil. 2009;6:18. DOI: https://doi.org/10.1186/1743-0003-6-18

Mehrholz J, Pohl M. Electromechanical-Assisted Gait Training After Stroke: A Systematic Review Comparing End-Effector and Exoskeleton Devices. J Rehabil Med [Internet]. 2012;44(3):193–9. Available from: http://www.ingentaconnect.com/search/download?pub=infobike://mjl/sreh/2012/00000044/00000003/art00001&mimetype=application/pdf DOI: https://doi.org/10.2340/16501977-0943

Freivogel S, Schmalohr D, Mehrholz J. Improved walking ability and reduced therapeutic stress with an electromechanical gait device. J Rehabil Med. 2009;41(9):734–9. DOI: https://doi.org/10.2340/16501977-0422

Fisher S. Use of Autoambulator for mobility improvement in patients with central nervous system (CNS) injury or disease. In: Neurorehabilitation and neural repair. 2008. p. 556.

Fisher S, Lucas L, Adam Thrasher T. Robot-Assisted Gait Training for Patients with Hemiparesis Due to Stroke. Top Stroke Rehabil [Internet]. 2011 May;18(3):269–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21642064 DOI: https://doi.org/10.1310/tsr1803-269

Emken JL, Wynne JH, Harkema SJ, Reinkensmeyer DJ. A robotic device for manipulating human stepping. IEEE Trans Robot [Internet]. 2006 Feb;22(1):185–9. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1589012 DOI: https://doi.org/10.1109/TRO.2005.861481

Emken JL, Harkema SJ, Beres-Jones J a., Ferreira CK, Reinkensmeyer DJ. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Biomed Eng. 2008;55(1):322–34. DOI: https://doi.org/10.1109/TBME.2007.910683

Ichinose WE, Reinkensmeyer DJ, Aoyagi D, Lin JT, Ngai K, Edgerton VR, et al. A robotic device for measuring and controlling pelvic motion during locomotor rehabilitation. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat No03CH37439) [Internet]. IEEE; 2003. p. 1690–3. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1279715 DOI: https://doi.org/10.1109/IEMBS.2003.1279715

Aoyagi D, Inchinose WE, Reinkensmeyer DJ, Bobrow JE. Human Step Rehabilitation Using a Robot Attached to the Pelvis. In: Dynamic Systems and Control, Parts A and B [Internet]. ASME; 2004. p. 443–9. Available from: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1652235 DOI: https://doi.org/10.1115/IMECE2004-59472

Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE. An Assistive Robotic Device That Can Synchronize to the Pelvic Motion During Human Gait Training. In: 9th International Conference on Rehabilitation Robotics, 2005 ICORR 2005 [Internet]. IEEE; 2005. p. 565–8. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1502026 DOI: https://doi.org/10.1109/ICORR.2005.1502026

Zanotto D, Stegall P, Agrawal SK. ALEX III: A novel robotic platform with 12 DOFs for human gait training. In: 2013 IEEE International Conference on Robotics and Automation [Internet]. IEEE; 2013. p. 3914–9. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6631128 DOI: https://doi.org/10.1109/ICRA.2013.6631128

Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng [Internet]. 2009 Feb;17(1):2–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19211317 DOI: https://doi.org/10.1109/TNSRE.2008.2008280

Fleerkotte BM, Koopman B, Buurke JH, van Asseldonk EHF, van der Kooij H, Rietman JS. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. J Neuroeng Rehabil [Internet]. 2014;11(1):26. Available from: http://www.jneuroengrehab.com/content/11/1/26 DOI: https://doi.org/10.1186/1743-0003-11-26

Asseldonk E van, Simons C, Folkersman M. Robot aided gait training according to the assist-as-needed principle in chonic stroke survivors. In: Proceedings of the Annual Meeting of the Society for Neuroscience (Poster). Chicago, Ill, USA; 2009.

Beyl P, Naudet J, Van Ham R, Lefeber D. Mechanical Design of an Active Knee Orthosis for Gait Rehabilitation. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics [Internet]. IEEE; 2007. p. 100–5. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4428413 DOI: https://doi.org/10.1109/ICORR.2007.4428413

Surdilovic D, Zhang J, Bernhardt R. STRING-MAN: Wire-robot technology for safe, flexible and human-friendly gait rehabilitation. 2007 IEEE 10th Int Conf Rehabil Robot ICORR’07. 2007;00(c):446–53. DOI: https://doi.org/10.1109/ICORR.2007.4428463

Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke [Internet]. 2002 Dec;33(12):2895–901. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12468788 DOI: https://doi.org/10.1161/01.STR.0000035734.61539.F6

Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27. DOI: https://doi.org/10.1177/0269215506071281

Peurala SH, Airaksinen O, Huuskonen P, Jäkälä P, Juhakoski M, Sandell K, et al. Effects of intensive therapy using gait trainer or floor walking exercises early after stroke. J Rehabil Med. 2009;41(3):166–73. DOI: https://doi.org/10.2340/16501977-0304

Schmidt H, Krüger J, Hesse S. HapticWalker - Haptic foot device for gait rehabilitation. In: Human Haptic Perception: Basics and Applications [Internet]. Birkhauser Verlag AG; 2008. p. 501–11. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84918789024&partnerID=40&md5=8d69ec54de484a78d8b3f8334f6923de

Hesse S, Werner C. Connecting research to the needs of patients and clinicians. Brain Res Bull. 2009;78(1):26–34. DOI: https://doi.org/10.1016/j.brainresbull.2008.06.004

Frey M, Colombo G, Vaglio M, Bucher R, Jorg M, Riener R. A Novel Mechatronic Body Weight Support System. IEEE Trans Neural Syst Rehabil Eng [Internet]. 2006 Sep;14(3):311–21. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1703563 DOI: https://doi.org/10.1109/TNSRE.2006.881556

Evolution Fitness Brasil. Eliptico Orbital Evolution Sportop E 450 [Internet]. 2013 [cited 2015 Sep 30]. Available from: https://www.youtube.com/watch?v=MLAnTb8VvM4

Evolution Fitness. Elíptico eletrônico evolution [Internet]. 2013 [cited 2015 Nov 24]. Available from: https://www.evolutionfitness.co/product-category/cardio/elipticas/page/2?srsltid=AfmBOood41wVx-SGYCCKz7xoDx1MSHibu3qVEjV0zx7zDGUM8NQZBbtF

Wang S, Wang L, Meijneke C, van Asseldonk E, Hoellinger T, Cheron G, et al. Design and Control of the MINDWALKER Exoskeleton. IEEE Trans Neural Syst Rehabil Eng [Internet]. 2015 Mar;23(2):277–86. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6940308 DOI: https://doi.org/10.1109/TNSRE.2014.2365697

Burgess JK, Weibel GC, Brown D a. Overground walking speed changes when subjected to body weight support conditions for nonimpaired and post stroke individuals. J Neuroeng Rehabil [Internet]. 2010;7(1):6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2827418&tool=pmcentrez&rendertype=abstract DOI: https://doi.org/10.1186/1743-0003-7-6

Allemand Y, Stauffer Y. Overground Gait Rehabilitation: First Clinical Investigation with the WalkTrainer. In: Proceedings of the European Conference on Technically Assisted Rehabilitation, (TAR ’09). Berlin, Germany; 2009.

Suzuki K, Kawamura Y, Hayashi T, Sakurai T, Hasegawa Y, Sankai Y. Intention-based walking support for paraplegia patient. In: Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics [Internet]. 2005. p. 2707–13. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-27944501048&partnerID=tZOtx3y1 DOI: https://doi.org/10.1109/ICSMC.2005.1571559

Kawamoto H, Hayashi T, Sakurai T, Eguchi K, Sankai Y. Development of single leg version of HAL for hemiplegia. Proc 31st Annu Int Conf IEEE Eng Med Biol Soc Eng Futur Biomed EMBC 2009. 2009;5038–43. DOI: https://doi.org/10.1109/IEMBS.2009.5333698

Strausser KA, Swift TA, Zoss AB, Kazerooni H. Prototype Medical Exoskeleton for Paraplegic Mobility: First Experimental Results. In: ASME 2010 Dynamic Systems and Control Conference, Volume 1 [Internet]. ASME; 2010. p. 453–8. Available from: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1613452 DOI: https://doi.org/10.1115/DSCC2010-4261

Swift TA, Strausser KA, Zoss AB, Kazerooni H. Control and Experimental Results for Post Stroke Gait Rehabilitation With a Prototype Mobile Medical Exoskeleton. In: ASME 2010 Dynamic Systems and Control Conference, Volume 1 [Internet]. ASME; 2010. p. 405–11. Available from: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1613434 DOI: https://doi.org/10.1115/DSCC2010-4204

Rex Bionics. Rex Bionics - Our Products [Internet]. 2015 [cited 2015 Nov 6]. Available from: https://www.rexbionics.com/product-information/

Maxon motor. Robotic exoskeleton: For a better quality of life [Internet]. 2013 [cited 2015 Nov 25]. p. 1–4. Available from: http://www.maxonmotor.com/medias/sys_master/8808028438558/2013-01-en-exoskeletton.pdf?attachment=true

MORI Y, TANIGUCHI T, INOUE K, FUKUOKA Y, SHIROMA N. Development of a Standing Style Transfer System ABLE with Novel Crutches for a Person with Disabled Lower Limbs. J Syst Des Dyn [Internet]. 2011;5(1):83–93. Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/jsdd/5.83?from=CrossRef DOI: https://doi.org/10.1299/jsdd.5.83

Kong K, Moon H, Hwang B, Jeon D, Tomizuka M. Impedance compensation of SUBAR for back-drivable force-mode actuation. IEEE Trans Robot. 2009;25(3):512–21. DOI: https://doi.org/10.1109/TRO.2009.2019786

Chen F, Yu Y, Ge Y, Sun J, Deng X. WPAL for Human Power Assist during Walking Using Pseudo-compliance Control. In: 2007 International Conference on Mechatronics and Automation [Internet]. IEEE; 2007. p. 2172–6. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4303888 DOI: https://doi.org/10.1109/ICMA.2007.4303888

Cao H, Ling Z, Zhu J, Wang Y, Wang W. Design frame of a leg exoskeleton for load-carrying augmentation. 2009 IEEE Int Conf Robot Biomimetics, ROBIO 2009. 2009;426–31. DOI: https://doi.org/10.1109/ROBIO.2009.5420684

Kiguchi K, Imada Y. EMG-based control for lower-limb power-assist exoskeletons. 2009 IEEE Work Robot Intell Informationally Struct Space, RiiSS 2009 - Proc. 2009;19–24. DOI: https://doi.org/10.1109/RIISS.2009.4937901

Kwa HK, Noorden JH, Missel M, Craig T, Pratt JE, Neuhaus PD. Development of the IHMC mobility assist exoskeleton. In: Proceedings - IEEE International Conference on Robotics and Automation. 2009. p. 2556–62. DOI: https://doi.org/10.1109/ROBOT.2009.5152394

Hayashi Y, Kiguchi K. A lower-limb power-assist robot with perception-assist. In: Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on. 2011. p. 1–6. DOI: https://doi.org/10.1109/ICORR.2011.5975445

Quintero HA, Farris RJ, Goldfarb M. Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals. In: 2011 IEEE International Conference on Rehabilitation Robotics [Internet]. IEEE; 2011. p. 1–6. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5975481 DOI: https://doi.org/10.1109/ICORR.2011.5975481

Lim HB, Hoon KH, Soh YC, Tow A, Low KH. Gait planning for effective rehabilitation - From gait study to application in clinical rehabilitation. In: 2009 IEEE International Conference on Rehabilitation Robotics [Internet]. IEEE; 2009. p. 271–6. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5209599 DOI: https://doi.org/10.1109/ICORR.2009.5209599

Safizadeh MR, Hussein M, Yaacob MS, Md Zain MZ, Abdullah MR, Che Kob MS, et al. Kinematic analysis of powered lower limb Orthoses for gait rehabilitation of hemiplegic and hemiparetic patients. Int J Math Model Methods Appl Sci. 2011;5(3):490–8.

Slavnic S, Leu A, Ristic-Durrant D, Graser A. Concept of a mobile robot-assisted gait rehabilitation system - simulation study. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems [Internet]. IEEE; 2010. p. 6022–7. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5649133 DOI: https://doi.org/10.1109/IROS.2010.5649133

Saito Y, Kikuchi K, Negoto H, Oshima T, Haneyoshi T. Development of Externally Powered Lower Limb Orthosis with Bilateral-Servo Actuator. In: 9th International Conference on Rehabilitation Robotics, 2005 ICORR 2005 [Internet]. IEEE; 2005. p. 394–9. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1501127 DOI: https://doi.org/10.1109/ICORR.2005.1501127

Costa N, Caldwell DG. Control of a Biomimetic “Soft-actuated” 10DoF Lower Body Exoskeleton. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006 BioRob 2006 [Internet]. IEEE; 2006. p. 495–501. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1639137 DOI: https://doi.org/10.1109/BIOROB.2006.1639137

Zabaleta H, Bureau M, Eizmendi G, Olaiz E, Medina J, Perez M. Exoskeleton design for functional rehabilitation in patients with neurological disorders and stroke. In: 2007 IEEE 10th International Conference on Rehabilitation Robotics [Internet]. IEEE; 2007. p. 112–8. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4428415 DOI: https://doi.org/10.1109/ICORR.2007.4428415

Honda. Walking Assist Device with Bodyweight Support Assist [Internet]. 2009 [cited 2015 Nov 6]. Available from: https://www.honda.mx/movilidad#bodyWeight

Honda. Walking Assist Device with Stride Management Assist [Internet]. 2009 [cited 2015 Nov 6]. Available from: https://global.honda/en/newsroom/news/2012/c120729eng.html

Low KH, Yin Y. An integrated lower exoskeleton system towards design of a portable active orthotic device. Int J Robot Autom [Internet]. 2007;22(1):32–43. Available from: http://dl.acm.org/citation.cfm?id=1739807.1739811 DOI: https://doi.org/10.2316/Journal.206.2007.1.206-1003

Xiaopeng Liu, Low KH, Hao Yong Yu. Development of a lower extremity exoskeleton for human performance enhancement. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) [Internet]. Sendai, Japan: IEEE; 2004. p. 3889–94. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1390021 DOI: https://doi.org/10.1109/IROS.2004.1390021

Zoss AB, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatronics [Internet]. 2006 Apr;11(2):128–38. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1618670 DOI: https://doi.org/10.1109/TMECH.2006.871087

Technaid S.L. Exo-H3 Main Features [Internet]. 2021 [cited 2022 Aug 21]. Available from: www.technaid.com-info@technaid.com

Technaid - Leading Motion. Exoesqueleto Exo-H3 [Internet]. 2020 [cited 2020 Jul 28]. Available from: https://www.technaid.com/es/productos/robotic-exoskeleton-exo-h3/

Gil-Castillo J, Barria P, Aguilar Cárdenas R, Baleta Abarza K, Andrade Gallardo A, Biskupovic Mancilla A, et al. A Robot-Assisted Therapy to Increase Muscle Strength in Hemiplegic Gait Rehabilitation. Front Neurorobot [Internet]. 2022 Apr 29;16. Available from: https://www.frontiersin.org/articles/10.3389/fnbot.2022.837494/full DOI: https://doi.org/10.3389/fnbot.2022.837494

Copilusi C, Dumitru S, Geonea I, Ciurezu LG, Dumitru N. Design Approaches of an Exoskeleton for Human Neuromotor Rehabilitation. Appl Sci [Internet]. 2022 Apr 13;12(8):3952. Available from: https://www.mdpi.com/2076-3417/12/8/3952 DOI: https://doi.org/10.3390/app12083952

de Miguel-Fernández J, Lobo-Prat J, Prinsen E, Font-Llagunes JM, Marchal-Crespo L. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness. J Neuroeng Rehabil [Internet]. 2023 Feb 19;20(1):23. Available from: https://doi.org/10.1186/s12984-023-01144-5 DOI: https://doi.org/10.1186/s12984-023-01144-5

Recibido 2024-11-21
Aceptado 2025-02-14
Publicado 2025-02-25

Datos de los fondos