Contenido principal del artículo

Autores

El crecimiento constante en la generación de residuos urbanos a nivel global ha generado una creciente necesidad de abordar su gestión de manera sostenible. A pesar de que la conversión de estos residuos en energía ha demostrado ser efectiva en varios países, su implementación en Colombia aún se encuentra en una etapa incipiente. En este estudio, se llevó a cabo un análisis bibliométrico y una revisión sistemática exhaustiva de la literatura con el propósito de evaluar las tecnologías de valorización de los residuos sólidos urbanos, así como su potencial integración en biorrefinerías en el contexto colombiano. Entre las tecnologías más relevantes identificadas se encuentran la incineración, la gasificación, la pirólisis, la digestión anaeróbica y la recuperación de gas de vertedero.
La Digestión Anaerobia destaca como una opción atractiva debido a su versatilidad. No obstante, se reconoce la necesidad imperante de adoptar una elección dinámica de tecnologías, considerando la diversidad de contextos y condiciones específicas en Colombia. Además, la gasificación y la pirólisis emergen como opciones viables, cada una con sus propias ventajas y desafíos, reflejando la complejidad y variabilidad en la gestión de residuos. En relación con la recuperación de gas de vertedero, se subraya su importancia como instalación esencial en vertederos controlados, desestimando la consideración de una alternativa independiente. Si bien la literatura sugiere que la incineración se percibe como menos favorable en términos sociales, económicos y ambientales, es crucial reconocer la dinámica y especificidad de cada situación. La elección de tecnologías debe ser adaptativa y orientada por un enfoque contextual que considere la heterogeneidad en la composición de residuos, infraestructura disponible y otros factores que varían significativamente de un escenario a otro. Este enfoque dinámico y adaptativo es esencial para abordar la complejidad de la gestión de residuos urbanos y encontrar soluciones sostenibles en el contexto colombiano.

Laura Ordoñez-Losada, Universidad del valle, Cali, Colombia.

https://orcid.org/0000-0002-4519-457X

David Gómez- Ríos, Universidad del Valle, Facultad de Ingeniería, Escuela de Ingeniería Química, Cali, Colombia

https://orcid.org/0000-0001-9657-2174

1.
Ramirez Malule HD, Ordoñez-Losada L, Gómez- Ríos D. Análisis bibliométrico de tecnologías para la valorización de residuos sólidos urbanos y su potencial en el contexto colombiano. inycomp [Internet]. 4 de junio de 2024 [citado 25 de junio de 2024];26(2):e-20813225. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13225

The World Bank. More Growth, Less Garbage. World Bank Publications [Internet]. 2021; Disponible en: https://openknowledge.worldbank.org/handle/10986/2174.

Kaza S, Yao L, Bhada-Tata P, Van Woerden F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 [Internet]. Urban Development Series. Washington, DC.; 2018. Disponible en: https://openknowledge.worldbank.org/handle/10986/30317 DOI: https://doi.org/10.1596/978-1-4648-1329-0

Kawai K, Tasaki T. Revisiting estimates of municipal solid waste generation per capita and their reliability. J Mater Cycles Waste Manag. 2016;18(1):1–13. DOI: https://doi.org/10.1007/s10163-015-0355-1

OCDE. 2022. 2022. Municipal waste (indicador).

Cortés CM. Estudio de los residuos sólidos en Colombia. 1ra ed. Bogotá: Universidad Externado de Colombia. Biblioteca. EAP.; 2018. 246 páginas.

Cheng H, Hu Y. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresour Technol [Internet]. 2010;101(11):3816–24. Disponible en: http://dx.doi.org/10.1016/j.biortech.2010.01.040 DOI: https://doi.org/10.1016/j.biortech.2010.01.040

Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI, et al. Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy. Appl Energy. el 15 de enero de 2017;186:189–96.

Global Methane Initiative. Global Methane Emissions and Mitigation Opportunities [Internet]. Vol. 2020, Global Methane Initiative. 2020. Disponible en: https://www.globalmethane.org/documents/gmi-mitigation-factsheet.pdf

Park JW, Shin HC. Surface emission of landfill gas from solid waste landfill. Atmos Environ. 2001;35(20):3445–51. DOI: https://doi.org/10.1016/S1352-2310(01)00118-2

Superservicios. Informe Nacional de Disposición Final de Residuos Sólidos 2020. 2021.

UNEP. Informe anual 2022 [Internet]. Nairobi, Kenya; 2022 [citado el 29 de mayo de 2023]. Disponible en: unep.org/annualreport/es

Hirsch JE. An index to quantify an individual’s scientific research output [Internet]. 2005. Disponible en: www.pnas.orgcgidoi10.1073pnas.0507655102

Kumar A, Samadder SR. A review on technological options of waste to energy for effective management of municipal solid waste. Vol. 69, Waste Management. Elsevier Ltd; 2017. p. 407–22. DOI: https://doi.org/10.1016/j.wasman.2017.08.046

Dulla N, priyadarshini S, Mishra S, Swain SC. Global Exploration on Bibliometric Research Articles: A Bibliometric Analysis. Library Philosophy and Practice. 2021;2021:1–26.

Liu CY, Wang JC. Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis. Scientometrics. 2010;82(1):21–36. DOI: https://doi.org/10.1007/s11192-009-0055-5

Meyer PS, Yung JW, Ausubel JH. A Primer on Logistic Growth and Substitution The Mathematics of the Loglet Lab Software [Internet]. 1999. Disponible en: http://phe.rockefeller.edu

Cucchiella F, D’Adamo I, Gastaldi M. Sustainable waste management: Waste to energy plant as an alternative to landfill. Energy Convers Manag. el 1 de enero de 2017;131:18–31. DOI: https://doi.org/10.1016/j.enconman.2016.11.012

Consonni S, Lombardi L, Viganò F. Municipal Solid Waste to Energy Technology. En: Encyclopedia of Sustainable Technologies. Elsevier; 2017. p. 389–401. DOI: https://doi.org/10.1016/B978-0-12-409548-9.10105-8

Afanador JP, Bonilla IL, Kafarov V V., León-Esteban AF, Carreño L V. Plastic Waste to Energy, Technology Solutions Based on Sustainability Criteria for Medium Size City in Latin America, Considering COVID-19 Pandemic. Chem Eng Trans. 2022;94:475–80.

Yaashikaa PR, Kumar PS, Saravanan A, Varjani S, Ramamurthy R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Science of the Total Environment. el 15 de diciembre de 2020;748. DOI: https://doi.org/10.1016/j.scitotenv.2020.141312

Silva-Martínez RD, Sanches-Pereira A, Ortiz W, Gómez Galindo MF, Coelho ST. The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities. Renew Energy. el 1 de agosto de 2020;156:509–25. DOI: https://doi.org/10.1016/j.renene.2020.04.056

Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P. Green conversion of municipal solid wastes into fuels and chemicals. Vol. 26, Electronic Journal of Biotechnology. Pontificia Universidad Catolica de Valparaiso; 2017. p. 69–83. DOI: https://doi.org/10.1016/j.ejbt.2017.01.004

Nanda S, Berruti F. A technical review of bioenergy and resource recovery from municipal solid waste. J Hazard Mater. el 5 de febrero de 2021;403. DOI: https://doi.org/10.1016/j.jhazmat.2020.123970

Di Matteo U, Nastasi B, Albo A, Astiaso Garcia D. Energy contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to energy-environmental sustainability in urban areas at small scale. Energies (Basel). el 9 de febrero de 2017;10(2). DOI: https://doi.org/10.3390/en10020229

Yap HY, Nixon JD. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Management. el 1 de diciembre de 2015;46:265–77. DOI: https://doi.org/10.1016/j.wasman.2015.08.002

Barkha Vaish, Abhijit Sarkar, Pooja Singh, Prabhat Kumar Singh, Chandan Sengupta, Rajeev Pratap Singh. Prospects of Biomethanation in Indian Urban Solid Waste: Stepping Towards a Sustainable Future. Springer Science+Business Media. 2016;(Environmental Footprints and Eco-design of Products and Processes). DOI: https://doi.org/10.1007/978-981-10-0150-5_1

Xu S, He H, Luo L. Status and Prospects of Municipal Solid Waste to Energy Technologies in China. 2016;31–54. DOI: https://doi.org/10.1007/978-981-10-0150-5_2

Mukherjee C, Denney J, Mbonimpa EG, Slagley J, Bhowmik R. A review on municipal solid waste-to-energy trends in the USA. Vol. 119, Renewable and Sustainable Energy Reviews. Elsevier Ltd; 2020. DOI: https://doi.org/10.1016/j.rser.2019.109512

Bosmans A, Vanderreydt I, Geysen D, Helsen L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: A technology review. J Clean Prod. el 15 de septiembre de 2013;55:10–23. DOI: https://doi.org/10.1016/j.jclepro.2012.05.032

Tabasová A, Kropáč J, Kermes V, Nemet A, Stehlík P. Waste-to-energy technologies: Impact on environment. Energy. 2012;44(1):146–55. DOI: https://doi.org/10.1016/j.energy.2012.01.014

Shareefdeen Z, Elkamel A, Tse S. Review of current technologies used in municipal solid waste-to-energy facilities in Canada. Vol. 17, Clean Technologies and Environmental Policy. Springer Verlag; 2015. p. 1837–46. DOI: https://doi.org/10.1007/s10098-015-0904-2

Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Management. el 1 de marzo de 2015;37:26–44. DOI: https://doi.org/10.1016/j.wasman.2014.11.010

Alzate-Arias S, Jaramillo-Duque Á, Villada F, Restrepo-Cuestas B. Assessment of government incentives for energy fromwaste in Colombia. Sustainability (Switzerland). el 23 de abril de 2018;10(4). DOI: https://doi.org/10.3390/su10041294

Paethanom A, Nakahara S, Kobayashi M, Prawisudha P, Yoshikawa K. Performance of tar removal by absorption and adsorption for biomass gasification. Fuel Processing Technology. diciembre de 2012;104:144–54. DOI: https://doi.org/10.1016/j.fuproc.2012.05.006

Christoforou E, Fokaides PA. A review of olive mill solid wastes to energy utilization techniques. Vol. 49, Waste Management. Elsevier Ltd; 2016. p. 346–63. DOI: https://doi.org/10.1016/j.wasman.2016.01.012

Arena U. Process and technological aspects of municipal solid waste gasification. A review. Waste Management. abril de 2012;32(4):625–39. DOI: https://doi.org/10.1016/j.wasman.2011.09.025

González WA, Zimmermann F, Pérez JF. Thermodynamic assessment of the fixed-bed downdraft gasification process of fallen leaves pelletized with glycerol as binder. Case Studies in Thermal Engineering. el 1 de septiembre de 2019;14. DOI: https://doi.org/10.1016/j.csite.2019.100480

Chand Malav L, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J Clean Prod. el 20 de diciembre de 2020;277. DOI: https://doi.org/10.1016/j.jclepro.2020.123227

Khan I, Kabir Z. Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment. Renew Energy. el 1 de mayo de 2020;150:320–33. DOI: https://doi.org/10.1016/j.renene.2019.12.132

Parthiba O, Kirsten K, Subramanian H, Muthu S. Environmental Footprints and Eco-design of Products and Processes Recycling of Solid Waste for Biofuels and Bio-chemicals [Internet]. 2016. Disponible en: http://www.springer.com/series/13340

Fernanda F, García F, Fernanda M, Galindo -Universidad G, Rosario D, Cherni JA. Assessment of a comprehensive municipal waste-to-energy dry anaerobic digestion process for the province of Sabana Centro (Colombia) combining technical and participatory approaches. 2022.

Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews [Internet]. 2015;45:540–55. Disponible en: http://dx.doi.org/10.1016/j.rser.2015.02.032 DOI: https://doi.org/10.1016/j.rser.2015.02.032

Yi J, Dong B, Jin J, Dai X. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis. PLoS One. el 22 de julio de 2014;9(7). DOI: https://doi.org/10.1371/journal.pone.0102548

Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews. 2011;15(1):821–6. DOI: https://doi.org/10.1016/j.rser.2010.07.042

Atabani AE, Tyagi VK, Fongaro G, Treichel H, Pugazhendhi A, Hoang AT. Integrated biorefineries, circular bio-economy, and valorization of organic waste streams with respect to bio-products. Vol. 12, Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH; 2022. p. 565. DOI: https://doi.org/10.1007/s13399-021-02017-4

Pérez V, Pascual A, Rodrigo A, García Torreiro M, Latorre-Sánchez M, Coll Lozano C, et al. Integrated innovative biorefinery for the transformation of municipal solid waste into biobased products. En: Waste Biorefinery. Elsevier; 2020. p. 41–80. DOI: https://doi.org/10.1016/B978-0-12-818228-4.00002-2

Duan Y, Pandey A, Zhang Z, Awasthi MK, Bhatia SK, Taherzadeh MJ. Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Ind Crops Prod. el 1 de octubre de 2020;153. DOI: https://doi.org/10.1016/j.indcrop.2020.112568

Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G, Sala S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour Technol. el 1 de septiembre de 2020;312. DOI: https://doi.org/10.1016/j.biortech.2020.123575

Nizami AS, Rehan M, Ouda OKM, Shahzad K, Sadef Y, Iqbal T, et al. An argument for developing waste-to-energy technologies in Saudi Arabia. Chem Eng Trans. el 1 de octubre de 2015;45:337–42.

Khan MU, Ahring B, Garcia-Perez T, Garcia-Perez M. Valorization of municipal solid waste in biorefineries for the creation of a circular economy: Role of emerging technologies. En: Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy. Elsevier; 2020. p. 323–47. DOI: https://doi.org/10.1016/B978-0-444-64309-4.00014-3

Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K, et al. Bioresource Technology Waste biorefineries : Enabling circular economies in developing countries. Bioresour Technol [Internet]. 2017;241:1101–17. Disponible en: http://dx.doi.org/10.1016/j.biortech.2017.05.097 DOI: https://doi.org/10.1016/j.biortech.2017.05.097

Ismail IM, Nizami A sattar. WASTE-BASED BIOREFINERIES IN DEVELOPING COUNTRIES : AN. 2016;2025.

Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI, et al. Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy. Appl Energy [Internet]. 2017;186:189–96. Disponible en: http://dx.doi.org/10.1016/j.apenergy.2016.04.116 DOI: https://doi.org/10.1016/j.apenergy.2016.04.116

Holland Circular Hotspot, Huisman H, Keesman B, Breukers L. Waste Management Country Report: Colombia [Internet]. 2021 feb [citado el 29 de mayo de 2023]. Disponible en: www.hollandcircularhotspot.nl

World Bank. Colombia: Municipal solid waste management. Washington, DC; 2018.

UAESP. Informe de Gestión de la Unidad Administrativa Especial de Servicios Públicos. Bogotá D.C.; 2022.

Sagastume Gutiérrez A, Cabello Eras JJ, Hens L, Vandecasteele C. The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. J Clean Prod. el 1 de octubre de 2020;269. DOI: https://doi.org/10.1016/j.jclepro.2020.122317

Montiel-Bohórquez ND, Pérez JF. Energy generation from municipal solid waste. Thermodynamic strategies to optimize the performance of thermal power plants. Informacion Tecnologica. el 1 de febrero de 2019;30(1):273–83.

DANE. Boletín Técnico: Cuenta ambiental y económica de flujos de materiales –residuos sólidos. 2018 ago.

Torres F, Ontiveros M, Donoso M. Estudio de Caso: San Andrés Colombia. 10 años de un incinerador sin estrenar y una isla que se desborda en residuos. 2021.

Bottausci S, Midence R, Serrano-Bernardo F, Bonoli A. Organic Waste Management and Circular Bioeconomy: A Literature Review Comparison between Latin America and the European Union. Vol. 14, Sustainability (Switzerland). MDPI; 2022. DOI: https://doi.org/10.3390/su14031661

Margallo M, Ziegler-Rodriguez K, Vázquez-Rowe I, Aldaco R, Irabien Á, Kahhat R. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Vol. 689, Science of the Total Environment. Elsevier B.V.; 2019. p. 1255–75. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.393

UAESP. Planta de Termovalorización. 2022.

El Tiempo. El Tiempo. 2022. Bogotá ya no tendrá una planta de termovalorización en Doña Juana.

Zhao X gang, Jiang G wu, Li A, Wang L. Economic analysis of waste-to-energy industry in China. Waste Management. el 1 de febrero de 2016;48:604–18. DOI: https://doi.org/10.1016/j.wasman.2015.10.014

Leme MMV, Rocha MH, Lora EES, Venturini OJ, Lopes BM, Ferreira CH. Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resour Conserv Recycl. 2014;87:8–20. DOI: https://doi.org/10.1016/j.resconrec.2014.03.003

Appels L, Lauwers J, Degrve J, Helsen L, Lievens B, Willems K, et al. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews [Internet]. 2011;15(9):4295–301. Disponible en: http://dx.doi.org/10.1016/j.rser.2011.07.121 DOI: https://doi.org/10.1016/j.rser.2011.07.121

Dong J, Tang Y, Nzihou A, Chi Y, Weiss-Hortala E, Ni M. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of the Total Environment. el 1 de junio de 2018;626:744–53. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.151

Shams S, Sahu JN, Rahman SMS, Ahsan A. Sustainable waste management policy in Bangladesh for reduction of greenhouse gases. Sustain Cities Soc. el 1 de agosto de 2017;33:18–26. DOI: https://doi.org/10.1016/j.scs.2017.05.008

Espinoza Pérez L, Ziegler-Rodríguez K, Espinoza Pérez AT, Vásquez ÓC, Vázquez-Rowe I. Closing the gap in the municipal solid waste management between metropolitan and regional cities from developing countries: A life cycle assessment approach. Waste Management. el 1 de abril de 2021;124:314–24. DOI: https://doi.org/10.1016/j.wasman.2021.02.020

Astrup TF, Tonini D, Turconi R, Boldrin A. Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations. Waste Management. el 1 de marzo de 2015;37:104–15. DOI: https://doi.org/10.1016/j.wasman.2014.06.011

Alzate S, Restrepo-Cuestas B, Jaramillo-Duque Á. Municipal solid waste as a source of electric power generation in Colombia: A techno-economic evaluation under different scenarios. Resources. el 1 de marzo de 2019;8(1). DOI: https://doi.org/10.3390/resources8010051

Montiel-Bohórquez ND, Saldarriaga-Loaiza JD, Pérez JF. Analysis of investment incentives for power generation based on an integrated plasma gasification combined cycle power plant using municipal solid waste. Case Studies in Thermal Engineering. el 1 de febrero de 2022;30. DOI: https://doi.org/10.1016/j.csite.2021.101748

Islam KMN. Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh. Vol. 81, Renewable and Sustainable Energy Reviews. Elsevier Ltd; 2018. p. 2472–86. DOI: https://doi.org/10.1016/j.rser.2017.06.053

Recibido 2023-09-11
Aceptado 2024-02-14
Publicado 2024-06-04