Bibliometric analysis of technologies for municipal solid waste valorization and their potential in the colombian context
Main Article Content
The constant growth in global urban waste generation has led to an increasing need to address its management sustainably. Despite the proven effectiveness of converting this waste into energy in various countries, its implementation in Colombia is still in its early stages. In this study, a bibliometric analysis and systematic review of the literature was conducted to assess urban solid waste valorization technologies and their potential integration into biorefineries in the Colombian context. Among the identified technologies, incineration, gasification, pyrolysis, anaerobic digestion, and landfill gas recovery stand out.
Anaerobic Digestion emerges as an attractive option due to its versatility. However, there is a recognized imperative to dynamically choose technologies, considering the diversity of contexts and specific conditions in Colombia. Additionally, gasification and pyrolysis appear as viable options, each with its own advantages and challenges, reflecting the complexity and variability in waste management. Concerning landfill gas recovery, its significance as an essential installation in controlled landfills is emphasized, dismissing its consideration as an independent alternative. While the literature suggests that incineration is perceived as less favorable in social, economic, and environmental terms, it is crucial to recognize the dynamics and specificity of each situation.
The choice of technologies must be adaptive and guided by a contextual approach that considers the heterogeneity in waste composition, available infrastructure, and other factors that vary significantly from one scenario to another. This dynamic and adaptive approach is essential to address the complexity of urban waste management and find sustainable solutions in the Colombian context.
The World Bank. More Growth, Less Garbage. World Bank Publications [Internet]. 2021; Disponible en: https://openknowledge.worldbank.org/handle/10986/2174.
Kaza S, Yao L, Bhada-Tata P, Van Woerden F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 [Internet]. Urban Development Series. Washington, DC.; 2018. Disponible en: https://openknowledge.worldbank.org/handle/10986/30317 DOI: https://doi.org/10.1596/978-1-4648-1329-0
Kawai K, Tasaki T. Revisiting estimates of municipal solid waste generation per capita and their reliability. J Mater Cycles Waste Manag. 2016;18(1):1–13. DOI: https://doi.org/10.1007/s10163-015-0355-1
OCDE. 2022. 2022. Municipal waste (indicador).
Cortés CM. Estudio de los residuos sólidos en Colombia. 1ra ed. Bogotá: Universidad Externado de Colombia. Biblioteca. EAP.; 2018. 246 páginas.
Cheng H, Hu Y. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresour Technol [Internet]. 2010;101(11):3816–24. Disponible en: http://dx.doi.org/10.1016/j.biortech.2010.01.040 DOI: https://doi.org/10.1016/j.biortech.2010.01.040
Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI, et al. Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy. Appl Energy. el 15 de enero de 2017;186:189–96.
Global Methane Initiative. Global Methane Emissions and Mitigation Opportunities [Internet]. Vol. 2020, Global Methane Initiative. 2020. Disponible en: https://www.globalmethane.org/documents/gmi-mitigation-factsheet.pdf
Park JW, Shin HC. Surface emission of landfill gas from solid waste landfill. Atmos Environ. 2001;35(20):3445–51. DOI: https://doi.org/10.1016/S1352-2310(01)00118-2
Superservicios. Informe Nacional de Disposición Final de Residuos Sólidos 2020. 2021.
UNEP. Informe anual 2022 [Internet]. Nairobi, Kenya; 2022 [citado el 29 de mayo de 2023]. Disponible en: unep.org/annualreport/es
Hirsch JE. An index to quantify an individual’s scientific research output [Internet]. 2005. Disponible en: www.pnas.orgcgidoi10.1073pnas.0507655102
Kumar A, Samadder SR. A review on technological options of waste to energy for effective management of municipal solid waste. Vol. 69, Waste Management. Elsevier Ltd; 2017. p. 407–22. DOI: https://doi.org/10.1016/j.wasman.2017.08.046
Dulla N, priyadarshini S, Mishra S, Swain SC. Global Exploration on Bibliometric Research Articles: A Bibliometric Analysis. Library Philosophy and Practice. 2021;2021:1–26.
Liu CY, Wang JC. Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis. Scientometrics. 2010;82(1):21–36. DOI: https://doi.org/10.1007/s11192-009-0055-5
Meyer PS, Yung JW, Ausubel JH. A Primer on Logistic Growth and Substitution The Mathematics of the Loglet Lab Software [Internet]. 1999. Disponible en: http://phe.rockefeller.edu
Cucchiella F, D’Adamo I, Gastaldi M. Sustainable waste management: Waste to energy plant as an alternative to landfill. Energy Convers Manag. el 1 de enero de 2017;131:18–31. DOI: https://doi.org/10.1016/j.enconman.2016.11.012
Consonni S, Lombardi L, Viganò F. Municipal Solid Waste to Energy Technology. En: Encyclopedia of Sustainable Technologies. Elsevier; 2017. p. 389–401. DOI: https://doi.org/10.1016/B978-0-12-409548-9.10105-8
Afanador JP, Bonilla IL, Kafarov V V., León-Esteban AF, Carreño L V. Plastic Waste to Energy, Technology Solutions Based on Sustainability Criteria for Medium Size City in Latin America, Considering COVID-19 Pandemic. Chem Eng Trans. 2022;94:475–80.
Yaashikaa PR, Kumar PS, Saravanan A, Varjani S, Ramamurthy R. Bioconversion of municipal solid waste into bio-based products: A review on valorisation and sustainable approach for circular bioeconomy. Science of the Total Environment. el 15 de diciembre de 2020;748. DOI: https://doi.org/10.1016/j.scitotenv.2020.141312
Silva-Martínez RD, Sanches-Pereira A, Ortiz W, Gómez Galindo MF, Coelho ST. The state-of-the-art of organic waste to energy in Latin America and the Caribbean: Challenges and opportunities. Renew Energy. el 1 de agosto de 2020;156:509–25. DOI: https://doi.org/10.1016/j.renene.2020.04.056
Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P. Green conversion of municipal solid wastes into fuels and chemicals. Vol. 26, Electronic Journal of Biotechnology. Pontificia Universidad Catolica de Valparaiso; 2017. p. 69–83. DOI: https://doi.org/10.1016/j.ejbt.2017.01.004
Nanda S, Berruti F. A technical review of bioenergy and resource recovery from municipal solid waste. J Hazard Mater. el 5 de febrero de 2021;403. DOI: https://doi.org/10.1016/j.jhazmat.2020.123970
Di Matteo U, Nastasi B, Albo A, Astiaso Garcia D. Energy contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to energy-environmental sustainability in urban areas at small scale. Energies (Basel). el 9 de febrero de 2017;10(2). DOI: https://doi.org/10.3390/en10020229
Yap HY, Nixon JD. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Management. el 1 de diciembre de 2015;46:265–77. DOI: https://doi.org/10.1016/j.wasman.2015.08.002
Barkha Vaish, Abhijit Sarkar, Pooja Singh, Prabhat Kumar Singh, Chandan Sengupta, Rajeev Pratap Singh. Prospects of Biomethanation in Indian Urban Solid Waste: Stepping Towards a Sustainable Future. Springer Science+Business Media. 2016;(Environmental Footprints and Eco-design of Products and Processes). DOI: https://doi.org/10.1007/978-981-10-0150-5_1
Xu S, He H, Luo L. Status and Prospects of Municipal Solid Waste to Energy Technologies in China. 2016;31–54. DOI: https://doi.org/10.1007/978-981-10-0150-5_2
Mukherjee C, Denney J, Mbonimpa EG, Slagley J, Bhowmik R. A review on municipal solid waste-to-energy trends in the USA. Vol. 119, Renewable and Sustainable Energy Reviews. Elsevier Ltd; 2020. DOI: https://doi.org/10.1016/j.rser.2019.109512
Bosmans A, Vanderreydt I, Geysen D, Helsen L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: A technology review. J Clean Prod. el 15 de septiembre de 2013;55:10–23. DOI: https://doi.org/10.1016/j.jclepro.2012.05.032
Tabasová A, Kropáč J, Kermes V, Nemet A, Stehlík P. Waste-to-energy technologies: Impact on environment. Energy. 2012;44(1):146–55. DOI: https://doi.org/10.1016/j.energy.2012.01.014
Shareefdeen Z, Elkamel A, Tse S. Review of current technologies used in municipal solid waste-to-energy facilities in Canada. Vol. 17, Clean Technologies and Environmental Policy. Springer Verlag; 2015. p. 1837–46. DOI: https://doi.org/10.1007/s10098-015-0904-2
Lombardi L, Carnevale E, Corti A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Management. el 1 de marzo de 2015;37:26–44. DOI: https://doi.org/10.1016/j.wasman.2014.11.010
Alzate-Arias S, Jaramillo-Duque Á, Villada F, Restrepo-Cuestas B. Assessment of government incentives for energy fromwaste in Colombia. Sustainability (Switzerland). el 23 de abril de 2018;10(4). DOI: https://doi.org/10.3390/su10041294
Paethanom A, Nakahara S, Kobayashi M, Prawisudha P, Yoshikawa K. Performance of tar removal by absorption and adsorption for biomass gasification. Fuel Processing Technology. diciembre de 2012;104:144–54. DOI: https://doi.org/10.1016/j.fuproc.2012.05.006
Christoforou E, Fokaides PA. A review of olive mill solid wastes to energy utilization techniques. Vol. 49, Waste Management. Elsevier Ltd; 2016. p. 346–63. DOI: https://doi.org/10.1016/j.wasman.2016.01.012
Arena U. Process and technological aspects of municipal solid waste gasification. A review. Waste Management. abril de 2012;32(4):625–39. DOI: https://doi.org/10.1016/j.wasman.2011.09.025
González WA, Zimmermann F, Pérez JF. Thermodynamic assessment of the fixed-bed downdraft gasification process of fallen leaves pelletized with glycerol as binder. Case Studies in Thermal Engineering. el 1 de septiembre de 2019;14. DOI: https://doi.org/10.1016/j.csite.2019.100480
Chand Malav L, Yadav KK, Gupta N, Kumar S, Sharma GK, Krishnan S, et al. A review on municipal solid waste as a renewable source for waste-to-energy project in India: Current practices, challenges, and future opportunities. J Clean Prod. el 20 de diciembre de 2020;277. DOI: https://doi.org/10.1016/j.jclepro.2020.123227
Khan I, Kabir Z. Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment. Renew Energy. el 1 de mayo de 2020;150:320–33. DOI: https://doi.org/10.1016/j.renene.2019.12.132
Parthiba O, Kirsten K, Subramanian H, Muthu S. Environmental Footprints and Eco-design of Products and Processes Recycling of Solid Waste for Biofuels and Bio-chemicals [Internet]. 2016. Disponible en: http://www.springer.com/series/13340
Fernanda F, García F, Fernanda M, Galindo -Universidad G, Rosario D, Cherni JA. Assessment of a comprehensive municipal waste-to-energy dry anaerobic digestion process for the province of Sabana Centro (Colombia) combining technical and participatory approaches. 2022.
Mao C, Feng Y, Wang X, Ren G. Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews [Internet]. 2015;45:540–55. Disponible en: http://dx.doi.org/10.1016/j.rser.2015.02.032 DOI: https://doi.org/10.1016/j.rser.2015.02.032
Yi J, Dong B, Jin J, Dai X. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis. PLoS One. el 22 de julio de 2014;9(7). DOI: https://doi.org/10.1371/journal.pone.0102548
Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews. 2011;15(1):821–6. DOI: https://doi.org/10.1016/j.rser.2010.07.042
Atabani AE, Tyagi VK, Fongaro G, Treichel H, Pugazhendhi A, Hoang AT. Integrated biorefineries, circular bio-economy, and valorization of organic waste streams with respect to bio-products. Vol. 12, Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH; 2022. p. 565. DOI: https://doi.org/10.1007/s13399-021-02017-4
Pérez V, Pascual A, Rodrigo A, García Torreiro M, Latorre-Sánchez M, Coll Lozano C, et al. Integrated innovative biorefinery for the transformation of municipal solid waste into biobased products. En: Waste Biorefinery. Elsevier; 2020. p. 41–80. DOI: https://doi.org/10.1016/B978-0-12-818228-4.00002-2
Duan Y, Pandey A, Zhang Z, Awasthi MK, Bhatia SK, Taherzadeh MJ. Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Ind Crops Prod. el 1 de octubre de 2020;153. DOI: https://doi.org/10.1016/j.indcrop.2020.112568
Caldeira C, Vlysidis A, Fiore G, De Laurentiis V, Vignali G, Sala S. Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment. Bioresour Technol. el 1 de septiembre de 2020;312. DOI: https://doi.org/10.1016/j.biortech.2020.123575
Nizami AS, Rehan M, Ouda OKM, Shahzad K, Sadef Y, Iqbal T, et al. An argument for developing waste-to-energy technologies in Saudi Arabia. Chem Eng Trans. el 1 de octubre de 2015;45:337–42.
Khan MU, Ahring B, Garcia-Perez T, Garcia-Perez M. Valorization of municipal solid waste in biorefineries for the creation of a circular economy: Role of emerging technologies. En: Current Developments in Biotechnology and Bioengineering: Sustainable Bioresources for the Emerging Bioeconomy. Elsevier; 2020. p. 323–47. DOI: https://doi.org/10.1016/B978-0-444-64309-4.00014-3
Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K, et al. Bioresource Technology Waste biorefineries : Enabling circular economies in developing countries. Bioresour Technol [Internet]. 2017;241:1101–17. Disponible en: http://dx.doi.org/10.1016/j.biortech.2017.05.097 DOI: https://doi.org/10.1016/j.biortech.2017.05.097
Ismail IM, Nizami A sattar. WASTE-BASED BIOREFINERIES IN DEVELOPING COUNTRIES : AN. 2016;2025.
Nizami AS, Shahzad K, Rehan M, Ouda OKM, Khan MZ, Ismail IMI, et al. Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy. Appl Energy [Internet]. 2017;186:189–96. Disponible en: http://dx.doi.org/10.1016/j.apenergy.2016.04.116 DOI: https://doi.org/10.1016/j.apenergy.2016.04.116
Holland Circular Hotspot, Huisman H, Keesman B, Breukers L. Waste Management Country Report: Colombia [Internet]. 2021 feb [citado el 29 de mayo de 2023]. Disponible en: www.hollandcircularhotspot.nl
World Bank. Colombia: Municipal solid waste management. Washington, DC; 2018.
UAESP. Informe de Gestión de la Unidad Administrativa Especial de Servicios Públicos. Bogotá D.C.; 2022.
Sagastume Gutiérrez A, Cabello Eras JJ, Hens L, Vandecasteele C. The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. J Clean Prod. el 1 de octubre de 2020;269. DOI: https://doi.org/10.1016/j.jclepro.2020.122317
Montiel-Bohórquez ND, Pérez JF. Energy generation from municipal solid waste. Thermodynamic strategies to optimize the performance of thermal power plants. Informacion Tecnologica. el 1 de febrero de 2019;30(1):273–83.
DANE. Boletín Técnico: Cuenta ambiental y económica de flujos de materiales –residuos sólidos. 2018 ago.
Torres F, Ontiveros M, Donoso M. Estudio de Caso: San Andrés Colombia. 10 años de un incinerador sin estrenar y una isla que se desborda en residuos. 2021.
Bottausci S, Midence R, Serrano-Bernardo F, Bonoli A. Organic Waste Management and Circular Bioeconomy: A Literature Review Comparison between Latin America and the European Union. Vol. 14, Sustainability (Switzerland). MDPI; 2022. DOI: https://doi.org/10.3390/su14031661
Margallo M, Ziegler-Rodriguez K, Vázquez-Rowe I, Aldaco R, Irabien Á, Kahhat R. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Vol. 689, Science of the Total Environment. Elsevier B.V.; 2019. p. 1255–75. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.393
UAESP. Planta de Termovalorización. 2022.
El Tiempo. El Tiempo. 2022. Bogotá ya no tendrá una planta de termovalorización en Doña Juana.
Zhao X gang, Jiang G wu, Li A, Wang L. Economic analysis of waste-to-energy industry in China. Waste Management. el 1 de febrero de 2016;48:604–18. DOI: https://doi.org/10.1016/j.wasman.2015.10.014
Leme MMV, Rocha MH, Lora EES, Venturini OJ, Lopes BM, Ferreira CH. Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resour Conserv Recycl. 2014;87:8–20. DOI: https://doi.org/10.1016/j.resconrec.2014.03.003
Appels L, Lauwers J, Degrve J, Helsen L, Lievens B, Willems K, et al. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews [Internet]. 2011;15(9):4295–301. Disponible en: http://dx.doi.org/10.1016/j.rser.2011.07.121 DOI: https://doi.org/10.1016/j.rser.2011.07.121
Dong J, Tang Y, Nzihou A, Chi Y, Weiss-Hortala E, Ni M. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants. Science of the Total Environment. el 1 de junio de 2018;626:744–53. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.151
Shams S, Sahu JN, Rahman SMS, Ahsan A. Sustainable waste management policy in Bangladesh for reduction of greenhouse gases. Sustain Cities Soc. el 1 de agosto de 2017;33:18–26. DOI: https://doi.org/10.1016/j.scs.2017.05.008
Espinoza Pérez L, Ziegler-Rodríguez K, Espinoza Pérez AT, Vásquez ÓC, Vázquez-Rowe I. Closing the gap in the municipal solid waste management between metropolitan and regional cities from developing countries: A life cycle assessment approach. Waste Management. el 1 de abril de 2021;124:314–24. DOI: https://doi.org/10.1016/j.wasman.2021.02.020
Astrup TF, Tonini D, Turconi R, Boldrin A. Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations. Waste Management. el 1 de marzo de 2015;37:104–15. DOI: https://doi.org/10.1016/j.wasman.2014.06.011
Alzate S, Restrepo-Cuestas B, Jaramillo-Duque Á. Municipal solid waste as a source of electric power generation in Colombia: A techno-economic evaluation under different scenarios. Resources. el 1 de marzo de 2019;8(1). DOI: https://doi.org/10.3390/resources8010051
Montiel-Bohórquez ND, Saldarriaga-Loaiza JD, Pérez JF. Analysis of investment incentives for power generation based on an integrated plasma gasification combined cycle power plant using municipal solid waste. Case Studies in Thermal Engineering. el 1 de febrero de 2022;30. DOI: https://doi.org/10.1016/j.csite.2021.101748
Islam KMN. Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh. Vol. 81, Renewable and Sustainable Energy Reviews. Elsevier Ltd; 2018. p. 2472–86. DOI: https://doi.org/10.1016/j.rser.2017.06.053
- Lina Julieth Ospina León, Diego Manotas-Duque, Howard Diego Ramirez Malule, Desafíos y oportunidades de la Vinaza de caña de azúcar. Un análisis bibliométrico. , Ingeniería y Competitividad: Vol. 25 No. 1 (2023): Ingeniería y Competitividad.
- Howard Diego Ramirez Malule, Diego Ramirez-Malule, David Gómez-Ríos, Mitigating the COVID-19 spread: a challenge and an opportunity , Ingeniería y Competitividad: Vol. 22 No. 2 (2020): Engineering and Competitiveness
- Howard Diego Ramirez Malule, MSc, Profesor , Bibliometric analysis: a powerful tool for supporting research in engineering , Ingeniería y Competitividad: Vol. 25 No. 1 (2023): Ingeniería y Competitividad.
Accepted 2024-02-14
Published 2024-06-04
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).