Contenido principal del artículo

Autores

La vinaza de caña de azúcar (VC) es el principal subproducto de la producción de bioetanol. Esta se considera un potencial contaminante debido a su índice de acidez y a la presencia de componentes orgánicos, sólidos en suspensión y metales pesados. Los altos niveles de producción de VC son sin duda una amenaza para el ambiente y la comunidad en general. El objetivo de este estudio fue evaluar las principales disposiciones o tratamientos de VC, además de sus aplicaciones, empleando mapas bibliométricos para el análisis de metadatos. Se encontró que los principales focos de estudio con relación a la VC son: (i) digestión anaeróbica (DA), (ii) fertirrigación, (iii) coagulación/floculación, (iv) algas, microalgas y hongos, y (v) producción de hidrógeno. Adicionalmente, se determinó que el tratamiento más efectivo para VC fue la DA, alcanzando una eficiencia de 90% en la remoción de demanda química de oxígeno y una recuperación energética entre 85 y 95% como biogás. Finalmente, se abordaron los desafíos y oportunidades que enfrenta Latinoamérica con la creciente producción de VC, así como una revisión detallada de su tratamiento y/o disposición, incluyendo condiciones óptimas para la producción de productos de valor agregado.

1.
Ospina León LJ, Manotas-Duque D, Ramirez Malule HD. Desafíos y oportunidades de la Vinaza de caña de azúcar. Un análisis bibliométrico. inycomp [Internet]. 30 de diciembre de 2022 [citado 25 de abril de 2024];25(1):e-30412144. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12144

Procaña. Subproductos y derivados de la Caña [Internet]. 2015 [cited 2021 Apr 18]. Available from: https://procana.org/site/subproductos-y-derivados-de-la-cana/

Mejía R. Colombia tiene la mayor productividad azucarera [Internet]. 2017 [cited 2020 May 27]. Available from: https://www.larepublica.co/economia/colombia-tiene-la-mayor-productividad-azucarera-2482881

FAOSTAT [Internet]. [cited 2021 Sep 1]. Available from: https://www.fao.org/faostat/en/#data/QCL/visualize

Asocaña. Balance azucarero colombiano Asocaña 2000 - 2021 (toneladas). [Internet]. 2022 [cited 2021 Dec 3]. Available from: https://www.asocana.org/modules/documentos/vistadocumento.aspx?id=5528

U.S. Department of Energy. Alternative Fuels Data Center: Maps and Data - Global Ethanol Production by Country or Region [Internet]. 2020 [cited 2021 Sep 6]. Available from: https://afdc.energy.gov/data/10331

OECD. OECD iLibrary | OECD-FAO Agricultural Outlook (Edition 2019) [Internet]. oecd-library.org. 2020 [cited 2021 Apr 18]. Available from: https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics/oecd-fao-agricultural-outlook-edition-2020_4919645f-en?parentId=http%3A%2F%2Finstance.metastore.ingenta.com%2Fcontent%2Fcollection%2Fagr-data-en

Carrilho ENVM, Labuto G, Kamogawa MY. Destination of Vinasse, a Residue From Alcohol Industry: Resource Recovery and Prevention of Pollution [Internet]. Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Elsevier Inc.; 2016. 21–43 p. Available from: http://dx.doi.org/10.1016/B978-0-12-803837-6.00002-0

Lammens TM, Franssen MCR, Scott EL, Sanders JPM. Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Vol. 44, Biomass and Bioenergy. 2012. p. 168–81.

España-Gamboa E, Mijangos-Cortes J, Barahona-Perez L, Dominguez-Maldonado J, Hernández-Zarate G, Alzate-Gaviria L. Vinasses: Characterization and treatments. Waste Manag Res. 2011;29(12):1235–50.

Hoarau J, Caro Y, Grondin I, Petit T. Journal of Water Process Engineering Sugarcane vinasse processing : Toward a status shift from waste to valuable resource . A review. J Water Process Eng [Internet]. 2018;24(January):11–25. Available from: https://doi.org/10.1016/j.jwpe.2018.05.003

Prazeres AR, Lelis J, Alves-Ferreira J, Carvalho F. Treatment of vinasse from sugarcane ethanol industry: H2SO4, NaOH and Ca(OH)2 precipitations, FeCl3 coagulation-flocculation and atmospheric CO2 carbonation. J Environ Chem Eng. 2019;7(4).

Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS. Sugarcane vinasse: Environmental implications of its use. Waste Manag [Internet]. 2013;33(12):2752–61. Available from: http://dx.doi.org/10.1016/j.wasman.2013.09.005

Ferraz N, Koyama MH, Araújo MM De, Zaiat M. Thermophilic anaerobic digestion of raw sugarcane vinasse Ant o. 2016;89.

Eduardo C, Silva DF, Karla A, Abud DS. Anaerobic biodigestion of sugarcane vinasse under mesophilic conditions using manure as inoculum Biodigestão anaeróbica da vinhaça de cana-de-açúcar em condições mesófilas usando esterco como inóculo. 2016;11.

Wilkie AC, Riedesel KJ, Owens JM. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy. 2000;19(2):63–102.

de Godoi LAG, Camiloti PR, Bernardes AN, Sanchez BLS, Torres APR, da Conceição Gomes A, et al. Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses. Environ Sci Pollut Res. 2019 Oct 1;26(28):29267–82.

Krishna Prasad R, Ram Kumar R, Srivastava SN. Design of optimum response surface experiments for electro-coagulation of distillery spent wash. Water Air Soil Pollut. 2008;191(1–4):5–13.

de Mattos LFA, Bastos RG. COD and nitrogen removal from sugarcane vinasse by heterotrophic green algae Desmodesmus sp. Desalin Water Treat. 2016 Apr 26;57(20):9465–73.

Lazaro CZ, Perna V, Etchebehere C, Varesche MBA. Sugarcane vinasse as substrate for fermentative hydrogen production: The effects of temperature and substrate concentration. Int J Hydrogen Energy. 2014 Apr 15;39(12):6407–18.

GOIS GNSB, MACÊDO W V., PEITER FS, CHAVES TC, SALES VCR, BARBOSAP AMA, et al. Evaluation of Biohydrogen Production From Sugarcane Vinasse in an Anaerobic Fluidized Bed Reactor Without Ph Control. Lat Am Appl Res. 2021;51(1):63–9.

Santos SC, Rosa PRF, Sakamoto IK, Amâncio Varesche MB, Silva EL. Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Int J Hydrogen Energy. 2014;39(18):9599–610.

Parsaee M, Kiani Deh Kiani M, Karimi K. A review of biogas production from sugarcane vinasse. Biomass and Bioenergy [Internet]. 2019;122(January):117–25. Available from: https://doi.org/10.1016/j.biombioe.2019.01.034

Asociación Geoinnova. La Bioeconomía como base de un desarrollo sostenible [Internet]. 2018 [cited 2021 Apr 18]. Available from: https://geoinnova.org/blog-territorio/la-bioeconomia-como-base-de-un-desarrollo-sostenible/

Pranckutė R. Web of science (Wos) and scopus: The titans of bibliographic information in today’s academic world. Publications. 2021;9(1).

UNEP. Towards sustainable production and use of resources: Assessing biofuels. 2009; Available from: http://www.unep.fr/scp/rpanel/pdf/Assessing_Biofuels_Full_Report.pdf

Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: A review. Bioresour Technol. 2007;98(12):2321–34.

Fuess LT, Garcia ML, Zaiat M. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci Total Environ [Internet]. 2018;634:29–40. Available from: https://doi.org/10.1016/j.scitotenv.2018.03.326

Moraes BS, Zaiat M, Bonomi A. Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renew Sustain Energy Rev [Internet]. 2015;44:888–903. Available from: http://dx.doi.org/10.1016/j.rser.2015.01.023

Couto PT, Eng F, Naessens W, Nopens I, Zaiat M, Ribeiro R. Modelling sugarcane vinasse processing in an acidogenic reactor to produce hydrogen with an ADM1-based model. Int J Hydrogen Energy [Internet]. 2020;45(11):6217–30. Available from: https://doi.org/10.1016/j.ijhydene.2019.12.206

Tadeu L, Sayuri L, Kiyuna M, Djalma A, Ferraz N, Felix G, et al. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy [Internet]. 2017;189:480–91. Available from: http://dx.doi.org/10.1016/j.apenergy.2016.12.071

Camargo J, Pereira N, Cabello P, Teran F. Viabilidade da aplicação do método respirométrico de Bartha para a análise da atividade microbiana de solos sob aplicação de vinhaça. Eng Ambient Pesqui e Tecnol. 2009;6(2).

Reis CER, Hu B. Vinasse from sugarcane ethanol production: Better treatment or better utilization? Front Energy Res. 2017;5(APR):1–7.

CVC. CVC ACOMPAÑA A INGENIOS AZUCAREROS EN EL PROCESO DE APLICACIÓN DE VINAZAS | Portal CVC [Internet]. 2021 [cited 2022 Jan 18]. Available from: https://www.cvc.gov.co/boletin-prensa-234-2021

Silalertruksa T, Pongpat P, Gheewala SH. Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. J Clean Prod [Internet]. 2017;140:906–13. Available from: http://dx.doi.org/10.1016/j.jclepro.2016.06.010

Fuess LT, Rodrigues IJ, Garcia ML. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng [Internet]. 2017;52(11):1063–72. Available from: https://doi.org/10.1080/10934529.2017.1338892

Christofoletti CA, Ansoar-Rodríguez Y, Guedes TA, Fontanetti CS. Comet assay and micronucleus tests on Oreochromis niloticus (Perciforme: Cichlidae) exposed to raw sugarcane vinasse and to phisicochemical treated vinasse by pH adjustment with lime (CaO). Chemosphere [Internet]. 2017;173:494–501. Available from: http://dx.doi.org/10.1016/j.chemosphere.2017.01.025

Cassman NA, Lourenço KS, Do Carmo JB, Cantarella H, Kuramae EE. Genome-resolved metagenomics of sugarcane vinasse bacteria. Biotechnol Biofuels [Internet]. 2018;11(1):1–16. Available from: https://doi.org/10.1186/s13068-018-1036-9

Instituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. Norma Técnica Colombiana [NTC] 5167. Icontec Int [Internet]. 2011;(571):1–51. Available from: www.icontec.org

Corporacion Autonoma Regional del Valle del Cauca. Resolucion 0081 de 2012 - Reglamentacion Vinazas. 2012. p. 27.

Paerl HW. Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia. 1995;41(1):237–59.

Carvalho JLN, Oliveira BG, Cantarella H, Chagas MF, Gonzaga LC, Lourenço KS, et al. Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates. Renew Sustain Energy Rev. 2021;149(July 2020).

Lisboa CC, Butterbach-Bahl K, Mauder M, Kiese R. Bioethanol production from sugarcane and emissions of greenhouse gases - known and unknowns. GCB Bioenergy. 2011;3(4):277–92.

Siqueira Neto M, Galdos M V., Feigl BJ, Cerri CEP, Cerri CC. Direct N2O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. GCB Bioenergy. 2016;8(2):269–80.

Lourenço KS, Rossetto R, Vitti AC, Montezano ZF, Soares JR, Sousa R de M, et al. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Sci Total Environ [Internet]. 2019;650:1476–86. Available from: https://doi.org/10.1016/j.scitotenv.2018.09.037

Yang L, Deng Y, Wang X, Zhang W, Shi X, Chen X, et al. Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp. inter-specific hybrids). Sci Total Environ [Internet]. 2021;752:141795. Available from: https://doi.org/10.1016/j.scitotenv.2020.141795

De Oliveira BG, Carvalho JLN, Cerri CEP, Cerri CC, Feigl BJ. Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas. Geoderma. 2013;200–201:77–84.

Cardona C, Machuca-martínez F, Marriaga-cabrales N. Treatment of vinasse by using electro-dissolution and chemical flocculation. Ing y Compet. 2013;15(2):191–200.

Francisca Kalavathi D, Uma L, Subramanian G. Degradation and metabolization of the pigment - Melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzyme Microb Technol. 2001;29(4–5):246–51.

Karimi S, Soofiani NM, Lundh T, Mahboubi A, Kiessling A, Taherzadeh MJ. Evaluation of filamentous fungal biomass cultivated on vinasse as an alternative nutrient source of fish feed: Protein, lipid, and mineral composition. Fermentation. 2019;5(4).

de Paula CBC, de Paula-Elias FC, Rodrigues MN, Coelho LF, de Oliveira NML, de Almeida AF, et al. Polyhydroxyalkanoate Synthesis by Burkholderia glumae into a Sustainable Sugarcane Biorefinery Concept. Front Bioeng Biotechnol. 2021;8(January):1–14.

Magrini FE, de Almeida GM, da Maia Soares D, Fuentes L, Ecthebehere C, Beal LL, et al. Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse. Biomass Convers Biorefinery. 2020;

Djalma Nunes Ferraz Júnior A, Wenzel J, Etchebehere C, Zaiat M. Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrogen Energy. 2014 Oct 13;39(30):16852–62.

Koyama MH, Araújo Júnior MM, Zaiat M, Ferraz Júnior ADN. Kinetics of thermophilic acidogenesis of typical Brazilian sugarcane vinasse. Energy. 2016;116:1097–103.

Fedebiocombustibles. Federación Nacional de Biocombustibles de Colombia [Internet]. 2019 [cited 2020 May 28]. Available from: https://www.fedebiocombustibles.com/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm

Rueda-Ordóñez DiA, Leal MRLV, Bonomi A, Cortez LAB, Cavalett O, Rincón JM. Simulating scenarios for compost and vinasse use to improve the economics and environmental aspects of representative Colombian sugarcane production systems. Renew Agric Food Syst. 2020;35(5):579–93.

Dirbeba MJ, Brink A, Zevenhoven M, Demartini N, Lindberg D, Hupa L, et al. Characterization of Vinasse for Thermochemical Conversion - Fuel Fractionation, Release of Inorganics, and Ash-Melting Behavior. Energy and Fuels. 2019;33(7):5840–8.

Giraldo, M.V; López PL. Unicellular Protein Production from Agro-Industrial Waste. VIRTUALPRO. 2008;

Goyes A, Bolaños G. Un estudio preliminar sobre el tratamiento de vinazas en agua supercrítica. XXIII Congr Colomb Ing Química. 2005;(1):13.

Castro LEN, Santos JVF, Fagnani KC, Alves HJ, Colpini LMS. Evaluation of the effect of different treatment methods on sugarcane vinasse remediation. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes [Internet]. 2019;54(9):791–800. Available from: https://doi.org/10.1080/03601234.2019.1669981

Vinasse - wizdom.ai [Internet]. 2021 [cited 2021 Apr 18]. Available from: https://www.wizdom.ai/topic/vinasse/8936782