Desafíos y oportunidades de la Vinaza de caña de azúcar. Un análisis bibliométrico.
Main Article Content
Sugarcane vinasse (SV) is the main by-product of bioethanol production. It is considered a potential pollutant due to its acidity index and the presence of organic components, suspended solids and heavy metals. High levels of SV production are undoubtedly a threat to the environment and the community in general. The aim of this study was to evaluate the main SV dispositions or treatments, in addition to their applications, by using bibliometric maps for metadata analysis. It was found that the studies related to SV were focused in (i) anaerobic digestion (AD), (ii) fertirrigation, (iii) coagulation/flocculation, (iv) algae, microalgae and fungi, and (v) biohydrogen production. Additionally, it was determined that the most effective treatment for SV was AD, reaching 90% chemical oxygen demand removal efficiency and energy recovery between 85 and 95% as biogas. Finally, the challenges and opportunities facing Latin America with the growing production of SV were addressed, as well as a detailed review of its treatment and/or disposal, including optimal conditions for the production of value-added products.
Procaña. Subproductos y derivados de la Caña [Internet]. 2015 [cited 2021 Apr 18]. Available from: https://procana.org/site/subproductos-y-derivados-de-la-cana/
Mejía R. Colombia tiene la mayor productividad azucarera [Internet]. 2017 [cited 2020 May 27]. Available from: https://www.larepublica.co/economia/colombia-tiene-la-mayor-productividad-azucarera-2482881
FAOSTAT [Internet]. [cited 2021 Sep 1]. Available from: https://www.fao.org/faostat/en/#data/QCL/visualize
Asocaña. Balance azucarero colombiano Asocaña 2000 - 2021 (toneladas). [Internet]. 2022 [cited 2021 Dec 3]. Available from: https://www.asocana.org/modules/documentos/vistadocumento.aspx?id=5528
U.S. Department of Energy. Alternative Fuels Data Center: Maps and Data - Global Ethanol Production by Country or Region [Internet]. 2020 [cited 2021 Sep 6]. Available from: https://afdc.energy.gov/data/10331
OECD. OECD iLibrary | OECD-FAO Agricultural Outlook (Edition 2019) [Internet]. oecd-library.org. 2020 [cited 2021 Apr 18]. Available from: https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics/oecd-fao-agricultural-outlook-edition-2020_4919645f-en?parentId=http%3A%2F%2Finstance.metastore.ingenta.com%2Fcontent%2Fcollection%2Fagr-data-en
Carrilho ENVM, Labuto G, Kamogawa MY. Destination of Vinasse, a Residue From Alcohol Industry: Resource Recovery and Prevention of Pollution [Internet]. Environmental Materials and Waste: Resource Recovery and Pollution Prevention. Elsevier Inc.; 2016. 21–43 p. Available from: http://dx.doi.org/10.1016/B978-0-12-803837-6.00002-0
Lammens TM, Franssen MCR, Scott EL, Sanders JPM. Availability of protein-derived amino acids as feedstock for the production of bio-based chemicals. Vol. 44, Biomass and Bioenergy. 2012. p. 168–81.
España-Gamboa E, Mijangos-Cortes J, Barahona-Perez L, Dominguez-Maldonado J, Hernández-Zarate G, Alzate-Gaviria L. Vinasses: Characterization and treatments. Waste Manag Res. 2011;29(12):1235–50.
Hoarau J, Caro Y, Grondin I, Petit T. Journal of Water Process Engineering Sugarcane vinasse processing : Toward a status shift from waste to valuable resource . A review. J Water Process Eng [Internet]. 2018;24(January):11–25. Available from: https://doi.org/10.1016/j.jwpe.2018.05.003
Prazeres AR, Lelis J, Alves-Ferreira J, Carvalho F. Treatment of vinasse from sugarcane ethanol industry: H2SO4, NaOH and Ca(OH)2 precipitations, FeCl3 coagulation-flocculation and atmospheric CO2 carbonation. J Environ Chem Eng. 2019;7(4).
Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS. Sugarcane vinasse: Environmental implications of its use. Waste Manag [Internet]. 2013;33(12):2752–61. Available from: http://dx.doi.org/10.1016/j.wasman.2013.09.005
Ferraz N, Koyama MH, Araújo MM De, Zaiat M. Thermophilic anaerobic digestion of raw sugarcane vinasse Ant o. 2016;89.
Eduardo C, Silva DF, Karla A, Abud DS. Anaerobic biodigestion of sugarcane vinasse under mesophilic conditions using manure as inoculum Biodigestão anaeróbica da vinhaça de cana-de-açúcar em condições mesófilas usando esterco como inóculo. 2016;11.
Wilkie AC, Riedesel KJ, Owens JM. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy. 2000;19(2):63–102.
de Godoi LAG, Camiloti PR, Bernardes AN, Sanchez BLS, Torres APR, da Conceição Gomes A, et al. Seasonal variation of the organic and inorganic composition of sugarcane vinasse: main implications for its environmental uses. Environ Sci Pollut Res. 2019 Oct 1;26(28):29267–82.
Krishna Prasad R, Ram Kumar R, Srivastava SN. Design of optimum response surface experiments for electro-coagulation of distillery spent wash. Water Air Soil Pollut. 2008;191(1–4):5–13.
de Mattos LFA, Bastos RG. COD and nitrogen removal from sugarcane vinasse by heterotrophic green algae Desmodesmus sp. Desalin Water Treat. 2016 Apr 26;57(20):9465–73.
Lazaro CZ, Perna V, Etchebehere C, Varesche MBA. Sugarcane vinasse as substrate for fermentative hydrogen production: The effects of temperature and substrate concentration. Int J Hydrogen Energy. 2014 Apr 15;39(12):6407–18.
GOIS GNSB, MACÊDO W V., PEITER FS, CHAVES TC, SALES VCR, BARBOSAP AMA, et al. Evaluation of Biohydrogen Production From Sugarcane Vinasse in an Anaerobic Fluidized Bed Reactor Without Ph Control. Lat Am Appl Res. 2021;51(1):63–9.
Santos SC, Rosa PRF, Sakamoto IK, Amâncio Varesche MB, Silva EL. Hydrogen production from diluted and raw sugarcane vinasse under thermophilic anaerobic conditions. Int J Hydrogen Energy. 2014;39(18):9599–610.
Parsaee M, Kiani Deh Kiani M, Karimi K. A review of biogas production from sugarcane vinasse. Biomass and Bioenergy [Internet]. 2019;122(January):117–25. Available from: https://doi.org/10.1016/j.biombioe.2019.01.034
Asociación Geoinnova. La Bioeconomía como base de un desarrollo sostenible [Internet]. 2018 [cited 2021 Apr 18]. Available from: https://geoinnova.org/blog-territorio/la-bioeconomia-como-base-de-un-desarrollo-sostenible/
Pranckutė R. Web of science (Wos) and scopus: The titans of bibliographic information in today’s academic world. Publications. 2021;9(1).
UNEP. Towards sustainable production and use of resources: Assessing biofuels. 2009; Available from: http://www.unep.fr/scp/rpanel/pdf/Assessing_Biofuels_Full_Report.pdf
Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: A review. Bioresour Technol. 2007;98(12):2321–34.
Fuess LT, Garcia ML, Zaiat M. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci Total Environ [Internet]. 2018;634:29–40. Available from: https://doi.org/10.1016/j.scitotenv.2018.03.326
Moraes BS, Zaiat M, Bonomi A. Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renew Sustain Energy Rev [Internet]. 2015;44:888–903. Available from: http://dx.doi.org/10.1016/j.rser.2015.01.023
Couto PT, Eng F, Naessens W, Nopens I, Zaiat M, Ribeiro R. Modelling sugarcane vinasse processing in an acidogenic reactor to produce hydrogen with an ADM1-based model. Int J Hydrogen Energy [Internet]. 2020;45(11):6217–30. Available from: https://doi.org/10.1016/j.ijhydene.2019.12.206
Tadeu L, Sayuri L, Kiyuna M, Djalma A, Ferraz N, Felix G, et al. Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy [Internet]. 2017;189:480–91. Available from: http://dx.doi.org/10.1016/j.apenergy.2016.12.071
Camargo J, Pereira N, Cabello P, Teran F. Viabilidade da aplicação do método respirométrico de Bartha para a análise da atividade microbiana de solos sob aplicação de vinhaça. Eng Ambient Pesqui e Tecnol. 2009;6(2).
Reis CER, Hu B. Vinasse from sugarcane ethanol production: Better treatment or better utilization? Front Energy Res. 2017;5(APR):1–7.
CVC. CVC ACOMPAÑA A INGENIOS AZUCAREROS EN EL PROCESO DE APLICACIÓN DE VINAZAS | Portal CVC [Internet]. 2021 [cited 2022 Jan 18]. Available from: https://www.cvc.gov.co/boletin-prensa-234-2021
Silalertruksa T, Pongpat P, Gheewala SH. Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. J Clean Prod [Internet]. 2017;140:906–13. Available from: http://dx.doi.org/10.1016/j.jclepro.2016.06.010
Fuess LT, Rodrigues IJ, Garcia ML. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng [Internet]. 2017;52(11):1063–72. Available from: https://doi.org/10.1080/10934529.2017.1338892
Christofoletti CA, Ansoar-Rodríguez Y, Guedes TA, Fontanetti CS. Comet assay and micronucleus tests on Oreochromis niloticus (Perciforme: Cichlidae) exposed to raw sugarcane vinasse and to phisicochemical treated vinasse by pH adjustment with lime (CaO). Chemosphere [Internet]. 2017;173:494–501. Available from: http://dx.doi.org/10.1016/j.chemosphere.2017.01.025
Cassman NA, Lourenço KS, Do Carmo JB, Cantarella H, Kuramae EE. Genome-resolved metagenomics of sugarcane vinasse bacteria. Biotechnol Biofuels [Internet]. 2018;11(1):1–16. Available from: https://doi.org/10.1186/s13068-018-1036-9
Instituto Colombiano de Normas Técnicas y Certificación [ICONTEC]. Norma Técnica Colombiana [NTC] 5167. Icontec Int [Internet]. 2011;(571):1–51. Available from: www.icontec.org
Corporacion Autonoma Regional del Valle del Cauca. Resolucion 0081 de 2012 - Reglamentacion Vinazas. 2012. p. 27.
Paerl HW. Coastal eutrophication in relation to atmospheric nitrogen deposition: Current perspectives. Ophelia. 1995;41(1):237–59.
Carvalho JLN, Oliveira BG, Cantarella H, Chagas MF, Gonzaga LC, Lourenço KS, et al. Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates. Renew Sustain Energy Rev. 2021;149(July 2020).
Lisboa CC, Butterbach-Bahl K, Mauder M, Kiese R. Bioethanol production from sugarcane and emissions of greenhouse gases - known and unknowns. GCB Bioenergy. 2011;3(4):277–92.
Siqueira Neto M, Galdos M V., Feigl BJ, Cerri CEP, Cerri CC. Direct N2O emission factors for synthetic N-fertilizer and organic residues applied on sugarcane for bioethanol production in Central-Southern Brazil. GCB Bioenergy. 2016;8(2):269–80.
Lourenço KS, Rossetto R, Vitti AC, Montezano ZF, Soares JR, Sousa R de M, et al. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Sci Total Environ [Internet]. 2019;650:1476–86. Available from: https://doi.org/10.1016/j.scitotenv.2018.09.037
Yang L, Deng Y, Wang X, Zhang W, Shi X, Chen X, et al. Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp. inter-specific hybrids). Sci Total Environ [Internet]. 2021;752:141795. Available from: https://doi.org/10.1016/j.scitotenv.2020.141795
De Oliveira BG, Carvalho JLN, Cerri CEP, Cerri CC, Feigl BJ. Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas. Geoderma. 2013;200–201:77–84.
Cardona C, Machuca-martínez F, Marriaga-cabrales N. Treatment of vinasse by using electro-dissolution and chemical flocculation. Ing y Compet. 2013;15(2):191–200.
Francisca Kalavathi D, Uma L, Subramanian G. Degradation and metabolization of the pigment - Melanoidin in distillery effluent by the marine cyanobacterium Oscillatoria boryana BDU 92181. Enzyme Microb Technol. 2001;29(4–5):246–51.
Karimi S, Soofiani NM, Lundh T, Mahboubi A, Kiessling A, Taherzadeh MJ. Evaluation of filamentous fungal biomass cultivated on vinasse as an alternative nutrient source of fish feed: Protein, lipid, and mineral composition. Fermentation. 2019;5(4).
de Paula CBC, de Paula-Elias FC, Rodrigues MN, Coelho LF, de Oliveira NML, de Almeida AF, et al. Polyhydroxyalkanoate Synthesis by Burkholderia glumae into a Sustainable Sugarcane Biorefinery Concept. Front Bioeng Biotechnol. 2021;8(January):1–14.
Magrini FE, de Almeida GM, da Maia Soares D, Fuentes L, Ecthebehere C, Beal LL, et al. Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse. Biomass Convers Biorefinery. 2020;
Djalma Nunes Ferraz Júnior A, Wenzel J, Etchebehere C, Zaiat M. Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrogen Energy. 2014 Oct 13;39(30):16852–62.
Koyama MH, Araújo Júnior MM, Zaiat M, Ferraz Júnior ADN. Kinetics of thermophilic acidogenesis of typical Brazilian sugarcane vinasse. Energy. 2016;116:1097–103.
Fedebiocombustibles. Federación Nacional de Biocombustibles de Colombia [Internet]. 2019 [cited 2020 May 28]. Available from: https://www.fedebiocombustibles.com/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm
Rueda-Ordóñez DiA, Leal MRLV, Bonomi A, Cortez LAB, Cavalett O, Rincón JM. Simulating scenarios for compost and vinasse use to improve the economics and environmental aspects of representative Colombian sugarcane production systems. Renew Agric Food Syst. 2020;35(5):579–93.
Dirbeba MJ, Brink A, Zevenhoven M, Demartini N, Lindberg D, Hupa L, et al. Characterization of Vinasse for Thermochemical Conversion - Fuel Fractionation, Release of Inorganics, and Ash-Melting Behavior. Energy and Fuels. 2019;33(7):5840–8.
Giraldo, M.V; López PL. Unicellular Protein Production from Agro-Industrial Waste. VIRTUALPRO. 2008;
Goyes A, Bolaños G. Un estudio preliminar sobre el tratamiento de vinazas en agua supercrítica. XXIII Congr Colomb Ing Química. 2005;(1):13.
Castro LEN, Santos JVF, Fagnani KC, Alves HJ, Colpini LMS. Evaluation of the effect of different treatment methods on sugarcane vinasse remediation. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes [Internet]. 2019;54(9):791–800. Available from: https://doi.org/10.1080/03601234.2019.1669981
Vinasse - wizdom.ai [Internet]. 2021 [cited 2021 Apr 18]. Available from: https://www.wizdom.ai/topic/vinasse/8936782
- Howard Diego Ramirez Malule, Diego Ramirez-Malule, David Gómez-Ríos, Mitigating the COVID-19 spread: a challenge and an opportunity , Ingeniería y Competitividad: Vol. 22 No. 2 (2020): Engineering and Competitiveness
- Howard Diego Ramirez Malule, MSc, Profesor , Bibliometric analysis: a powerful tool for supporting research in engineering , Ingeniería y Competitividad: Vol. 25 No. 1 (2023): Ingeniería y Competitividad.
- Laura Ordoñez-Losada, David Gómez- Ríos, Howard Diego Ramirez Malule, Bibliometric analysis of technologies for municipal solid waste valorization and their potential in the colombian context , Ingeniería y Competitividad: Vol. 26 No. 2 (2024): Ingeniería y Competitividad
- Diego Manotas-Duque, Alejandro Estrada-Bedón, José Uribe-Rodríguez, Application of Gini coefficient and semivariance as estimators of risk in project selection , Ingeniería y Competitividad: Vol. 13 No. 2 (2011)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).