Study of the effect of radiation intensity and H2O2 concentration in the treatment of effluent from the textile industry with UV/H2O2
Main Article Content
A large amount of textile wastewater containing various toxic chemicals is discharged daily, posing a risk to ecosystems and human health. Since the processes of conventional municipal wastewater treatment plants do not effectively remove these compounds, in this study, the actual treatment of textile wastewater was evaluated by a tertiary treatment with the advanced oxidation process, UV/H2O2 based. A pre-treatment consisting of filtration and neutralization was applied, followed by a UV/H2O2 treatment varying the concentration of H2O2, the intensity of the radiation was also varied using a set of 15 W power lamps each. The best degradation condition was obtained with a H2O2 0.10 M and a radiation intensity of 45 W, considering an energy consumption evaluation of the treatment.
(1) El-Gohary F, Ibrahim, N, Nasr F, Abo-Shosha H, Ali H. A new approach to accomplish wastewater regulation in textile sector: an Egyptian case study. Cellulose Chemistry and Technology. 2013;47(3–4):309–315. Available from: https://www.cellulosechemtechnol.ro/pdf/CCT3-4(2013)/p.309-315.pdf
(2) Samsami S, Mohamadi M, Sarrafzadeh MH, Rene ER, Firoozbahr M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process Safety and Environmental Protection. 2020;143:138-63. https://doi.org/10.1016/j.psep.2020.05.034
(3) Green peace. Puntadas Tóxicas, el Oscuro Secreto de la Moda [Internet]. Green Peace; 2012. Available from: http://hdr.undp.org/en/media/HDR05_complete.pdf
(4) Flores A, Vitale P, Eyler G, Cañizo A. Remoción de colorantes textiles aplicando procesos fotoquímicos oxidativos (UV/H2O2 /lana de acero comercial). Afinidad. 2015;72(571):188–195. Available from: https://raco.cat/index.php/afinidad/article/view/300847.
(5) Botelho D, Cleto E, Rodriguez T. Treatment of industrial effluents of recalcitrant nature using ozone, hydrogen peroxide and ultraviolet radiation. Revista Facultad de Ingeniería. 2008;(46):24–38. Available from: https://revistas.udea.edu.co/index.php/ingenieria/article/view/17926.
(6) Khurana P, Thatai S, Sapna, Kumar D. Chapter 6 - Destruction of recalcitrant nanomaterials contaminants in industrial wastewater. In: Kumar-Mishra A, Anawar HMD, Drouiche N, editors. Emerging and Nanomaterial Contaminants in Wastewater Advanced Treatment Technologies. 2019;137–58. Available from: https://doi.org/10.1016/B978-0-12-814673-6.00006-1.
(7) Álvarez M, Ruidíaz-Martínez M, Cruz-Quesada G, López-Ramón M, Rivera-Utrilla J, Sánchez-Polo M, Mota A. Removal of parabens from water by UV-driven advanced oxidation processes. Chemical Engineering Journal. 2020;379:122334. https://doi.org/10.1016/j.cej.2019.122334
(8) Yagüe C. Eliminación de color en aguas de industrias de acabado de piel mediante tecnologías de oxidación [Doctoral Thesis]. Alicante: Universidad de Alicante; 2001. Available from: http://www.cervantesvirtual.com/nd/ark:/59851/bmc1z446
(9) Rodríguez A, Letón P, Rosal R, Dorado M, Villar S, Sanz J. Tratamientos Avanzados de Aguas Residuales Industriales. Madrid: CITME; 2006. Available from: http://www.madrid.org/bvirtual/BVCM001696.pdf
(10) Ebrahimi I, Parvinzadeh Gashti M, Sarafpour M. Photocatalytic discoloration of denim using advanced oxidation process with H2O2/UV. Journal of Photochemistry and Photobiology A: Chemistry. 2018;360:278-88. https://doi.org/10.1016/j.jphotochem.2018.04.053
(11) Edwards J. Investigación de la remoción de color por medio de oxidación química. Virtualpro [Internet]. 2007;(63):22-39. Available from: https://www.virtualpro.co/revista/industria-textil/22#4585
(12) Ministerio de Ambiente y Desarrollo Sostenible. Resolución 0631 de 2015. Parámetros y valores límites máximos permisibles en los vertimientos puntuales a cuerpos de agua superficiales y a los sitemas de alcantarillado público. 2015.
(13) Pire-Sierra M, Rodríguez-Sargent K, Fuenmayor-Reyes M, Fuenmayor Y, Acevedo H, et. al. Biodegradabilidad de las diferentes fracciones de agua residual producidas en una tenería. Ciencia e Ingeniería Neogranadina. 2011;21(2):5-19. https://doi.org/10.18359/rcin.257
(14) Fryda M, Matthée T, Mulcahy S, Höfer M, Schäfer L, Tröster I. Applications of DIACHEM® electrodes in electrolytic water treatment. Electrochemical Society Interface. 2003;12(1):40–44. https://doi.org/10.1149/2.F10031IF
(15) Theurich J, Lindner M, Bahnemann D. Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study. Langmuir. 1996;12(26):6368–6376. https://doi.org/10.1021/la960228t
(16) Herrmann JM. Photocatalysis fundamentals revisited to avoid several misconceptions, Applied Catalysis B: Environmental. 2010;99(3–4):461–468. https://doi.org/10.1016/j.apcatb.2010.05.012
Accepted 2021-07-13
Published 2022-01-15
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).