Transformation of Organic Cacao (Theobroma cacao) Husk into Commercial
Main Article Content
Introduction: agroindustrial wastes can be transformed to mitigate the negative impacts associated with their disposal. In cocoa production, cocoa pod husk (CPH) constitutes between 67% and 76% of the total cocoa weight. This study focuses on the potential of CPH as a valuable resource for producing activated carbon, cellulose, and potassium hydroxide (KOH)..
Objective: The objective of this research was to characterize and transform the CPH obtained from an organic crop in San Bernardo-Ibagué (Colombia) into activated carbon, cellulose, and KOH.
Methods: activated carbon was produced through chemical activation using KOH, with a specific procedure for characterizing the obtained product through thermal analysis (TGA) and nitrogen adsorption and desorption isotherms. For cellulose extraction, an alkaline treatment with 2% w/w NaOH was followed by a bleaching process with 2.5% w/w sodium hypochlorite. KOH was obtained by first extracting potassium carbonate and then causticizing it.
Results: activated carbon (AC) was produced with a yield of 25.6%, exhibiting a surface area of 468 m²/g, a mean pore diameter of 10.8 nm, and a total pore volume of 0.228 cm³/g, with 60% fixed carbon, 27% volatile material, 6% ash, and 6% moisture.
Conclusions: the transformation of cocoa pod husk into activated carbon, cellulose, and KOH provides a sustainable approach to managing agroindustrial waste, generating valuable products with significant potential for various applications. The results obtained demonstrate the feasibility of utilizing CPH as a resource in agroindustrial processes.
Tonini D, Albizzati PF, Astrup TF. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 2018 Mar; 76:744-766.
https://doi.org/10.1016/j.wasman.2018.03.032 DOI: https://doi.org/10.1016/j.wasman.2018.03.032
Ischia G, Fiori L. Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process. Reactor and Plant Modeling, Waste Biomass Valor. 2021 Oct; 12: 2797-2824.
https://doi.org/10.1007/s12649-020-01255-3 DOI: https://doi.org/10.1007/s12649-020-01255-3
Malucelli LC, Lacerda LG, Dziedzic M, da Silva MA. Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research, Rev. Environ. Sci. and Biotechnology.2017 Feb; 16(1): 131-145.
https://doi.org/10.1007/s11157-017-9423-4 DOI: https://doi.org/10.1007/s11157-017-9423-4
Prado I, Cubrero J, Lu TA, Eibes G. Integral multi-valorization of agro-industrial wastes: A review. Waste Management.2024 Jun; 183:42 -52.
https://doi.org/10.1016/j.wasman.2024.05.001 DOI: https://doi.org/10.1016/j.wasman.2024.05.001
Abbott PC, Benjamin TJ, Burniske GR, Croft MM, Fenton MC, Lundy RF et al. An Analysis of the Supply Chain of Cacao in Colombia, United States Agency for International Development - USAID. 2018 Oct.
Bello O., Sian, TT, Ahmad MA. Adsorption of Remazol Brilliant Violet-5R reactive dye from aqueous solution by cocoa pod husk-based activated carbon: Kinetic, equilibrium and thermodynamic studies, Asia-Pac. J. Chem. Eng.2012 Mar;7(3): 378-388.
https://doi.org/10.1002/apj.557 DOI: https://doi.org/10.1002/apj.557
Meza-Sepúlveda DC, Castro AM, Zamora A, Arboleda JW, Gallego AM, Camargo-Rodríguez AV. Bio-based value chains potential in the management of cacao pod waste in Colombia, a case study, Agronomy.2021 Abr;11(4): 693.
https://doi.org/10.3390/agronomy11040693 DOI: https://doi.org/10.3390/agronomy11040693
Lu F, Rodriguez J, Van DI, Westwood NJ, Shaw L, Robinson JS et al. Valorisation strategies for cocoa pod husk and its fractions, Curr. Opin. Green Sustain. Chem.2018 Jul; 14: 80-88.
https://doi.org/10.1016/j.cogsc.2018.07.007 DOI: https://doi.org/10.1016/j.cogsc.2018.07.007
Belwal T, Cravotto C, Ramola S, Thakur M, Chemat F, Cravotto G. Bioactive Compounds from Cocoa Husk: Extraction, Analysis and Applications in Food Production Chain, Foods. 2022 Mar;11: 798.
https://doi.org/10.3390/foods11060798 DOI: https://doi.org/10.3390/foods11060798
Tea K, Igor K, Kiril D. Cocoa husk biomass conversion for application in fibre packaging, Biomass Convers. Biorefin. 2022 Oct.
Tingaut P, Zimmermann T, Sèbe G. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials, J. Mater. Chem. 2012 Jul; 22(38) 20105-20111
https://doi.org/10.1039/c2jm32956e DOI: https://doi.org/10.1039/c2jm32956e
Luo L, Lan Y, Zhang Q, Deng J, Luo L, Zeng Q et al.A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors. Journal of Energy Storage.2022 Nom; 55.
https://doi.org/10.1016/j.est.2022.105839 DOI: https://doi.org/10.1016/j.est.2022.105839
Yahya MA, Al-Qodah Z, Ngah WZ. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sust. Energ. Rev.2015 Jun; 46:218-235.
https://doi.org/10.1016/j.rser.2015.02.051 DOI: https://doi.org/10.1016/j.rser.2015.02.051
Bonvehí JS, Coll FV. Protein quality assessment in cocoa husk. Food Res. Int. 1999 Abr; 32: 201-208.
https://doi.org/10.1016/S0963-9969(99)00088-5 DOI: https://doi.org/10.1016/S0963-9969(99)00088-5
Babayemi JO, Adewuyi GO, Dauda KT, Kayode AA. The Ancient Alkali Production Technology and the Modern Improvement. Asian J. Appl. Sci. 2011; 4: 22-29.
https://doi.org/10.3923/ajaps.2011.22.29 DOI: https://doi.org/10.3923/ajaps.2011.22.29
Arueya GL, Sharon OO. Characterization of Dutch-Cocoa produced using potash extract from cocoa pod husk as an alkalizing bioresource, Braz. J. Food Technol., Campinas. 2023; 26: 1 - 15.
https://doi.org/10.1590/1981-6723.02322 DOI: https://doi.org/10.1590/1981-6723.02322
Daniyan IA, Mpofu K, Daniyan OL, Adeodu AO, Uchegbu ID. Design and Modelling of Automated Reactor for the Production of Caustic Potash from Cocoa Pod Husk. Procedia CIRP. 2019; 84 :960-965.
https://doi.org/10.1016/j.procir.2019.03.201 DOI: https://doi.org/10.1016/j.procir.2019.03.201
Tsai WT, Bai YC, Lin YQ, Lai YC, Tsai CH. Porous and adsorption properties of activated carbon prepared from cocoa pod husk by chemical activation, Biomass Convers Biorefin .2020 Mar ;10(1): 35-43.
https://doi.org/10.1007/s13399-019-00403-7 DOI: https://doi.org/10.1007/s13399-019-00403-7
Dos Santos DM, Bukzem A, Ascheri PR, Signini R, De Aquino LB. Microwave-assisted carboxymethylation of cellulose extracted from brewer's spent grain. Carbohydr. Polym. 2015 Jun; 131: 125-133.
https://doi.org/10.1016/j.carbpol.2015.05.051 DOI: https://doi.org/10.1016/j.carbpol.2015.05.051
Ogundiran MB, Babayemi JO, Nzeribe CG. Determination of metal content and an assessment of the potential use of waste cashew nut ash (CNSA) as a source for potash production, Bioresources.2011; 6(1):529 - 536.
https://doi.org/10.15376/biores.6.1.529-536 DOI: https://doi.org/10.15376/biores.6.1.529-536
García M, Soto H, Peralta E, Carvajal E, Madera T, Lomelí M et al. Production and Characterization of Cellulosic Pulp from Mango Agro-Industrial Waste and Potential Applications, Polymers. 2023 Jul; 15: 3163.
https://doi.org/10.3390/polym15153163 DOI: https://doi.org/10.3390/polym15153163
Ofori P. Production of potassium hydroxide (KOH) from plant biomass: the case of cocoa pod husks and plantain peels. [tesis doctoral en internet]. Kumasi - Ghana; 2017 [citada 16 Ene 2024]. 66 p. Disponible en :https://www.researchgate.net/publication/340298729 (2017).
Babayemi JO, Dauda KT, Kayode AA, Nwude DO, Ajiboye JA, Essien ER et al. Determination of potash alkali and metal contents of ashes obtained from peels of some varieties of nigeria grown musa species, Bioresources.2010; 5(3): 1384 - 1392.
https://doi.org/10.15376/biores.5.3.1384-1392 DOI: https://doi.org/10.15376/biores.5.3.1384-1392
Londoño-Larrea P, Villamarin-Barriga E, García AN, Marcilla A. Study of Cocoa Pod Husks Thermal Decomposition. Appl. Sci. 2022 Sep; 12(18) 9318
https://doi.org/10.3390/app12189318 DOI: https://doi.org/10.3390/app12189318
Díez D, Urueña A, Piñero R, Barrio A, Tamminen T. Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by thermogravimetric analysis and pseudocomponent kinetic model (TGA-PKM Method), Processes.2020 Ago; 8(9): 1048.
https://doi.org/10.3390/pr8091048 DOI: https://doi.org/10.3390/pr8091048
Eletta OA, Adeniyi AG, Ighalo JO, Onifade DV, Ayandele FO. Valorisation of Cocoa (Theobroma cacao) pod husk as precursors for the production of adsorbents for water treatment, Environ. Technol. Rev. 2020 Feb; 9(1):20-36.
https://doi.org/10.1080/21622515.2020.1730983 DOI: https://doi.org/10.1080/21622515.2020.1730983
Villota SM, Lei H, Villota E, Qian M, Lavarias J, Taylan V et al. Microwave-Assisted Activation of Waste Cocoa Pod Husk by H3PO4 and KOH - Comparative Insight into Textural Properties and Pore Development, ACS Omega. 2019 Abr; 4(4):7088-7095.
https://doi.org/10.1021/acsomega.8b03514 DOI: https://doi.org/10.1021/acsomega.8b03514
Ateş F, Özcan Ö. Preparation and Characterization of Activated Carbon from Poplar Sawdust by Chemical Activation: Comparison of Different Activating Agents and Carbonization Temperaturem, Eur. J., Eng. Sci., Tech. 2018 Nov; 3(11): 6-11.
https://doi.org/10.24018/ejeng.2018.3.11.939 DOI: https://doi.org/10.24018/ejeng.2018.3.11.939
Chen R, Lia L, Liua Z, Luc M, Wanga C, Lia H, Maa W, Wang S. Preparation and characterization of activated carbons from tobacco stem by chemical activation, J. Air Waste Manage Assoc. 2017 Abr; 67(6): 713-724.
https://doi.org/10.1080/10962247.2017.1280560 DOI: https://doi.org/10.1080/10962247.2017.1280560
Muniandy L, Adam F, Mohamed AR, Ng EP. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 2014 Jun; 197: 316-323.
https://doi.org/10.1016/j.micromeso.2014.06.020 DOI: https://doi.org/10.1016/j.micromeso.2014.06.020
Prakash MO, Raghavendra G, Ojha S, Panchal M. Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method, in Materials Today: Proceedings. 2020 Jun; 39(4) 1476-148.
https://doi.org/10.1016/j.matpr.2020.05.370 DOI: https://doi.org/10.1016/j.matpr.2020.05.370
Lessa OA, Tavares IM, Souza LO, Pimenta LG, Cordazzo M, Tonoli HD et al. New biodegradable film produced from cocoa shell nanofibrils containing bioactive compounds. J. Coat. Technol. Res. 2021 Sep; 18(6):1613-1624.
https://doi.org/10.1007/s11998-021-00519-4 DOI: https://doi.org/10.1007/s11998-021-00519-4
Gomez E, Nunell G, Cukierman AL, Bonelli P. Agroindustrial waste conversion into ultramicroporous activated carbons for greenhouse gases adsorption-based processes, Bioresour. Technol. Rep. 2022 Jun; 18:101008.
https://doi.org/10.1016/j.biteb.2022.101008 DOI: https://doi.org/10.1016/j.biteb.2022.101008
Oginni O, Singh K, Oporto G, Dawson B, McDonald L, Sabolsky E. Influence of one-step and two-step KOH activation on activated carbon characteristics, Bioresour. Technol. Rep. 2019 Jun; 7.
https://doi.org/10.1016/j.biteb.2019.100266 DOI: https://doi.org/10.1016/j.biteb.2019.100266
García D, Jaramillo M, Bustamante F, Villa L, Alarcon E. Epoxidation of β-pinene with a highly-active and low-cost catalyst, Braz. J. Chem. Eng. 2020 Nov; 38: 89-100.
https://doi.org/10.1007/s43153-020-00078-y DOI: https://doi.org/10.1007/s43153-020-00078-y
Prado KS, Spinacé AS. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses, Int. J. Biol. Macromol. 2018 Oct; 122: 410-416.
https://doi.org/10.1016/j.ijbiomac.2018.10.187 DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.187
Hafemann E, Battisti R, Marangoni C, Machado AF. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals, Carbohydr. Polym. 2019 May; 218:188-198.
https://doi.org/10.1016/j.carbpol.2019.04.086 DOI: https://doi.org/10.1016/j.carbpol.2019.04.086
Henrique MA, Silvério HA, Neto PF, Pasquini D. Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals, J. Environ. Manage. 2013 Feb; 121: 202-209.
https://doi.org/10.1016/j.jenvman.2013.02.054 DOI: https://doi.org/10.1016/j.jenvman.2013.02.054
Nang v, Chi H, Duy T, Thanh T, Van P, Van L. Extraction of High Crystalline Nanocellulose from Biorenewable Sources of Vietnamese Agricultural Wastes, J Polym Environ.2020 Mar;28:1465-1474.
https://doi.org/10.1007/s10924-020-01695-x DOI: https://doi.org/10.1007/s10924-020-01695-x
Nada MA, El-Kady MY, El-sayed ES, Amine FM. Preparation and characterization of microcrystalline cellulose (MCC). Bioresources. 2009 Sep; 4(4): 1359-1371.
https://doi.org/10.15376/biores.4.4.1359-1371 DOI: https://doi.org/10.15376/biores.4.4.1359-1371
Jiang J, Zhu Y, Jiang F. Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives.Carbohydrate polymers. 2021 Sep; 267, 1-21.
https://doi.org/10.1016/j.carbpol.2021.118188 DOI: https://doi.org/10.1016/j.carbpol.2021.118188
Mekuye B, Abera B. Nanomaterials: An overview of synthesis, classification,characterization, and applications. Nano Select. 2023 Jun; 4:486-501.
https://doi.org/10.1002/nano.202300038 DOI: https://doi.org/10.1002/nano.202300038
Tyshkunova IV, Poshina, DN, Skorik, Y. Cellulose Cryogels as Promising Materials for Biomedical Applications. Int. J. Mol. Sci. 2022 Feb; 23 (4): 2037.
https://doi.org/10.3390/ijms23042037 DOI: https://doi.org/10.3390/ijms23042037
Mazlita Y, Lee HV, Hamid BA. Preparation of cellulose nanocrystals bio-polymer from agro-industrial wastes: Separation and characterization, Polym. Polym. Compos. 2016; 24(9): 719-728.
https://doi.org/10.1177/096739111602400907 DOI: https://doi.org/10.1177/096739111602400907
Taiwo AA, Oluwadare I, Shobo AO, Amolegbe SA. Extraction and potential application of caustic potash from kolanut husk, ugwu pod husk and plantain peels, Scientific Research and Essay. 2008 Oct; 3 (10):515-517.
Taiwo OE, Osinowo AO. Evaluation of various agro-wastes for traditional black soap production. Bioresour. Technol. 2001 Ago; 79(1): 95-97.
https://doi.org/10.1016/S0960-8524(00)00188-7 DOI: https://doi.org/10.1016/S0960-8524(00)00188-7
Accepted 2024-07-22
Published 2024-09-24
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).