Contenido principal del artículo

Autores

Introducción: los desechos agroindustriales pueden ser transformados para mitigar los impactos negativos asociados con su disposición. En la producción de cacao, la cáscara de la mazorca de cacao (CMC) constituye entre el 67% y el 76% del peso total del cacao. Este estudio se centra en el potencial de la CMC como un recurso valioso para la producción de carbón activado, celulosa y hidróxido de potasio (KOH)..
Objetivo: caracterizar y transformar la CMC obtenida de un cultivo orgánico en San Bernardo-Ibagué (Colombia) en carbón activado, celulosa y KOH.
Métodos: se produjo carbón activado mediante activación química con KOH, utilizando un procedimiento específico para caracterizar el producto obtenido a través de análisis térmico (TGA) y la isoterma de adsorción y desorción de nitrógeno. Para la extracción de celulosa, se realizó un tratamiento alcalino con NaOH al 2% p/p, seguido de un proceso de blanqueo con hipoclorito de sodio al 2.5% p/p. El KOH se obtuvo extrayendo primero el carbonato de potasio y luego causticizándolo.
Resultados: el carbón activado (CA) se produjo con un rendimiento del 25.6% y presentó una superficie de 468 m²/g, un diámetro medio de poro de 10.8 nm, y un volumen total de poro de 0.228 cm³/g, con un 60% de carbono fijo, 27% de material volátil, 6% de ceniza y 6% de humedad.
Conclusiones: la transformación de la cáscara de la mazorca de cacao en carbón activado, celulosa y KOH ofrece un enfoque sostenible para la gestión de desechos agroindustriales, generando productos valiosos con un alto potencial para diversas aplicaciones. Los resultados obtenidos demuestran la viabilidad de utilizar la CMC como recurso en procesos agroindustriales.

1.
Valencia LF, Tovar AM, Villa AL. Transformación de cáscara de Cacao Orgánico (Theobroma cacao) en productos comerciales. inycomp [Internet]. 24 de septiembre de 2024 [citado 26 de septiembre de 2024];26(3):e-20713519. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13519

Tonini D, Albizzati PF, Astrup TF. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 2018 Mar; 76:744-766.

https://doi.org/10.1016/j.wasman.2018.03.032

Ischia G, Fiori L. Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process. Reactor and Plant Modeling, Waste Biomass Valor. 2021 Oct; 12: 2797-2824.

https://doi.org/10.1007/s12649-020-01255-3

Malucelli LC, Lacerda LG, Dziedzic M, da Silva MA. Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research, Rev. Environ. Sci. and Biotechnology.2017 Feb; 16(1): 131-145.

https://doi.org/10.1007/s11157-017-9423-4

Prado I, Cubrero J, Lu TA, Eibes G. Integral multi-valorization of agro-industrial wastes: A review. Waste Management.2024 Jun; 183:42 -52.

https://doi.org/10.1016/j.wasman.2024.05.001

Abbott PC, Benjamin TJ, Burniske GR, Croft MM, Fenton MC, Lundy RF et al. An Analysis of the Supply Chain of Cacao in Colombia, United States Agency for International Development - USAID. 2018 Oct.

Bello O., Sian, TT, Ahmad MA. Adsorption of Remazol Brilliant Violet-5R reactive dye from aqueous solution by cocoa pod husk-based activated carbon: Kinetic, equilibrium and thermodynamic studies, Asia-Pac. J. Chem. Eng.2012 Mar;7(3): 378-388.

https://doi.org/10.1002/apj.557

Meza-Sepúlveda DC, Castro AM, Zamora A, Arboleda JW, Gallego AM, Camargo-Rodríguez AV. Bio-based value chains potential in the management of cacao pod waste in Colombia, a case study, Agronomy.2021 Abr;11(4): 693.

https://doi.org/10.3390/agronomy11040693

Lu F, Rodriguez J, Van DI, Westwood NJ, Shaw L, Robinson JS et al. Valorisation strategies for cocoa pod husk and its fractions, Curr. Opin. Green Sustain. Chem.2018 Jul; 14: 80-88.

https://doi.org/10.1016/j.cogsc.2018.07.007

Belwal T, Cravotto C, Ramola S, Thakur M, Chemat F, Cravotto G. Bioactive Compounds from Cocoa Husk: Extraction, Analysis and Applications in Food Production Chain, Foods. 2022 Mar;11: 798.

https://doi.org/10.3390/foods11060798

Tea K, Igor K, Kiril D. Cocoa husk biomass conversion for application in fibre packaging, Biomass Convers. Biorefin. 2022 Oct.

Tingaut P, Zimmermann T, Sèbe G. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials, J. Mater. Chem. 2012 Jul; 22(38) 20105-20111

https://doi.org/10.1039/c2jm32956e

Luo L, Lan Y, Zhang Q, Deng J, Luo L, Zeng Q et al.A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors. Journal of Energy Storage.2022 Nom; 55.

https://doi.org/10.1016/j.est.2022.105839

Yahya MA, Al-Qodah Z, Ngah WZ. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sust. Energ. Rev.2015 Jun; 46:218-235.

https://doi.org/10.1016/j.rser.2015.02.051

Bonvehí JS, Coll FV. Protein quality assessment in cocoa husk. Food Res. Int. 1999 Abr; 32: 201-208.

https://doi.org/10.1016/S0963-9969(99)00088-5

Babayemi JO, Adewuyi GO, Dauda KT, Kayode AA. The Ancient Alkali Production Technology and the Modern Improvement. Asian J. Appl. Sci. 2011; 4: 22-29.

https://doi.org/10.3923/ajaps.2011.22.29

Arueya GL, Sharon OO. Characterization of Dutch-Cocoa produced using potash extract from cocoa pod husk as an alkalizing bioresource, Braz. J. Food Technol., Campinas. 2023; 26: 1 - 15.

https://doi.org/10.1590/1981-6723.02322

Daniyan IA, Mpofu K, Daniyan OL, Adeodu AO, Uchegbu ID. Design and Modelling of Automated Reactor for the Production of Caustic Potash from Cocoa Pod Husk. Procedia CIRP. 2019; 84 :960-965.

https://doi.org/10.1016/j.procir.2019.03.201

Tsai WT, Bai YC, Lin YQ, Lai YC, Tsai CH. Porous and adsorption properties of activated carbon prepared from cocoa pod husk by chemical activation, Biomass Convers Biorefin .2020 Mar ;10(1): 35-43.

https://doi.org/10.1007/s13399-019-00403-7

Dos Santos DM, Bukzem A, Ascheri PR, Signini R, De Aquino LB. Microwave-assisted carboxymethylation of cellulose extracted from brewer's spent grain. Carbohydr. Polym. 2015 Jun; 131: 125-133.

https://doi.org/10.1016/j.carbpol.2015.05.051

Ogundiran MB, Babayemi JO, Nzeribe CG. Determination of metal content and an assessment of the potential use of waste cashew nut ash (CNSA) as a source for potash production, Bioresources.2011; 6(1):529 - 536.

https://doi.org/10.15376/biores.6.1.529-536

García M, Soto H, Peralta E, Carvajal E, Madera T, Lomelí M et al. Production and Characterization of Cellulosic Pulp from Mango Agro-Industrial Waste and Potential Applications, Polymers. 2023 Jul; 15: 3163.

https://doi.org/10.3390/polym15153163

Ofori P. Production of potassium hydroxide (KOH) from plant biomass: the case of cocoa pod husks and plantain peels. [tesis doctoral en internet]. Kumasi - Ghana; 2017 [citada 16 Ene 2024]. 66 p. Disponible en :https://www.researchgate.net/publication/340298729 (2017).

Babayemi JO, Dauda KT, Kayode AA, Nwude DO, Ajiboye JA, Essien ER et al. Determination of potash alkali and metal contents of ashes obtained from peels of some varieties of nigeria grown musa species, Bioresources.2010; 5(3): 1384 - 1392.

https://doi.org/10.15376/biores.5.3.1384-1392

Londoño-Larrea P, Villamarin-Barriga E, García AN, Marcilla A. Study of Cocoa Pod Husks Thermal Decomposition. Appl. Sci. 2022 Sep; 12(18) 9318

https://doi.org/10.3390/app12189318

Díez D, Urueña A, Piñero R, Barrio A, Tamminen T. Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by thermogravimetric analysis and pseudocomponent kinetic model (TGA-PKM Method), Processes.2020 Ago; 8(9): 1048.

https://doi.org/10.3390/pr8091048

Eletta OA, Adeniyi AG, Ighalo JO, Onifade DV, Ayandele FO. Valorisation of Cocoa (Theobroma cacao) pod husk as precursors for the production of adsorbents for water treatment, Environ. Technol. Rev. 2020 Feb; 9(1):20-36.

https://doi.org/10.1080/21622515.2020.1730983

Villota SM, Lei H, Villota E, Qian M, Lavarias J, Taylan V et al. Microwave-Assisted Activation of Waste Cocoa Pod Husk by H3PO4 and KOH - Comparative Insight into Textural Properties and Pore Development, ACS Omega. 2019 Abr; 4(4):7088-7095.

https://doi.org/10.1021/acsomega.8b03514

Ateş F, Özcan Ö. Preparation and Characterization of Activated Carbon from Poplar Sawdust by Chemical Activation: Comparison of Different Activating Agents and Carbonization Temperaturem, Eur. J., Eng. Sci., Tech. 2018 Nov; 3(11): 6-11.

https://doi.org/10.24018/ejeng.2018.3.11.939

Chen R, Lia L, Liua Z, Luc M, Wanga C, Lia H, Maa W, Wang S. Preparation and characterization of activated carbons from tobacco stem by chemical activation, J. Air Waste Manage Assoc. 2017 Abr; 67(6): 713-724.

https://doi.org/10.1080/10962247.2017.1280560

Muniandy L, Adam F, Mohamed AR, Ng EP. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 2014 Jun; 197: 316-323.

https://doi.org/10.1016/j.micromeso.2014.06.020

Prakash MO, Raghavendra G, Ojha S, Panchal M. Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method, in Materials Today: Proceedings. 2020 Jun; 39(4) 1476-148.

https://doi.org/10.1016/j.matpr.2020.05.370

Lessa OA, Tavares IM, Souza LO, Pimenta LG, Cordazzo M, Tonoli HD et al. New biodegradable film produced from cocoa shell nanofibrils containing bioactive compounds. J. Coat. Technol. Res. 2021 Sep; 18(6):1613-1624.

https://doi.org/10.1007/s11998-021-00519-4

Gomez E, Nunell G, Cukierman AL, Bonelli P. Agroindustrial waste conversion into ultramicroporous activated carbons for greenhouse gases adsorption-based processes, Bioresour. Technol. Rep. 2022 Jun; 18:101008.

https://doi.org/10.1016/j.biteb.2022.101008

Oginni O, Singh K, Oporto G, Dawson B, McDonald L, Sabolsky E. Influence of one-step and two-step KOH activation on activated carbon characteristics, Bioresour. Technol. Rep. 2019 Jun; 7.

https://doi.org/10.1016/j.biteb.2019.100266

García D, Jaramillo M, Bustamante F, Villa L, Alarcon E. Epoxidation of β-pinene with a highly-active and low-cost catalyst, Braz. J. Chem. Eng. 2020 Nov; 38: 89-100.

https://doi.org/10.1007/s43153-020-00078-y

Prado KS, Spinacé AS. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses, Int. J. Biol. Macromol. 2018 Oct; 122: 410-416.

https://doi.org/10.1016/j.ijbiomac.2018.10.187

Hafemann E, Battisti R, Marangoni C, Machado AF. Valorization of royal palm tree agroindustrial waste by isolating cellulose nanocrystals, Carbohydr. Polym. 2019 May; 218:188-198.

https://doi.org/10.1016/j.carbpol.2019.04.086

Henrique MA, Silvério HA, Neto PF, Pasquini D. Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals, J. Environ. Manage. 2013 Feb; 121: 202-209.

https://doi.org/10.1016/j.jenvman.2013.02.054

Nang v, Chi H, Duy T, Thanh T, Van P, Van L. Extraction of High Crystalline Nanocellulose from Biorenewable Sources of Vietnamese Agricultural Wastes, J Polym Environ.2020 Mar;28:1465-1474.

https://doi.org/10.1007/s10924-020-01695-x

Nada MA, El-Kady MY, El-sayed ES, Amine FM. Preparation and characterization of microcrystalline cellulose (MCC). Bioresources. 2009 Sep; 4(4): 1359-1371.

https://doi.org/10.15376/biores.4.4.1359-1371

Jiang J, Zhu Y, Jiang F. Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives.Carbohydrate polymers. 2021 Sep; 267, 1-21.

https://doi.org/10.1016/j.carbpol.2021.118188

Mekuye B, Abera B. Nanomaterials: An overview of synthesis, classification,characterization, and applications. Nano Select. 2023 Jun; 4:486-501.

https://doi.org/10.1002/nano.202300038

Tyshkunova IV, Poshina, DN, Skorik, Y. Cellulose Cryogels as Promising Materials for Biomedical Applications. Int. J. Mol. Sci. 2022 Feb; 23 (4): 2037.

https://doi.org/10.3390/ijms23042037

Mazlita Y, Lee HV, Hamid BA. Preparation of cellulose nanocrystals bio-polymer from agro-industrial wastes: Separation and characterization, Polym. Polym. Compos. 2016; 24(9): 719-728.

https://doi.org/10.1177/096739111602400907

Taiwo AA, Oluwadare I, Shobo AO, Amolegbe SA. Extraction and potential application of caustic potash from kolanut husk, ugwu pod husk and plantain peels, Scientific Research and Essay. 2008 Oct; 3 (10):515-517.

Taiwo OE, Osinowo AO. Evaluation of various agro-wastes for traditional black soap production. Bioresour. Technol. 2001 Ago; 79(1): 95-97.

https://doi.org/10.1016/S0960-8524(00)00188-7

Recibido 2024-02-01
Aceptado 2024-07-22
Publicado 2024-09-24