Contenido principal del artículo

Se llevó a cabo un análisis exhaustivo del comportamiento elastoplástico de láminas de hierro ARMCO sometidas a deformación plástica severa (SPD) mediante la técnica de presión calibrada restringida (CGP) por medio del método de elementos finitos (FEM). Se consideraron parámetros como la geometría de la matriz y el coeficiente de fricción para estudiar sus efectos en la respuesta elasto-plástica del material. Para ello se utilizó ANSYS workbench para las simulaciones por elementos finitos. Los resultados mostraron que los parámetros estudiados influyen de forma diferente no sólo en la deformación alcanzada sino también en la distribución de la deformación a través de la lámina.

1.
Mendoza-Cuesta A, Suárez-Granados Y, Higuera-Cobos OF, Flórez-García LC, Moreno-Téllez CM. Análisis por Elementos Finitos del Proceso de Presión Calibrada Restringida en la Deformación de Láminas de Hierro Armco. inycomp [Internet]. 18 de mayo de 2021 [citado 25 de septiembre de 2022];23(2):e21611262. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11262

(1) R. Z. Valiev, I. V Alexandrov, Y. T. Zhu, and T. C. Lowe, “Paradox on of strength and ductility in metals processed by SPD,” J. Mater. Res., vol. 17, pp. 5–8, 2002. DOI: https://doi.org/10.1557/JMR.2002.0002

(2) Y. T. Zhu and T. G. Langdon, “The fundamentals of nanostructured materials processed by severe plastic deformation,” Jom, vol. 56, no. 10, pp. 58–63, 2004. DOI: https://doi.org/10.1007/s11837-004-0294-0

(3) I. Sabirov, M. Y. Murashkin, and R. Z. Valiev, “Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development,” Mater. Sci. Eng. A, vol. 560, pp. 1–24, 2013. DOI: https://doi.org/10.1016/j.msea.2012.09.020

(4) R. B. Figueiredo and T. G. Langdon, “Fabricating ultrafine-grained materials through the application of severe plastic deformation: A review of developments in Brazil,” J. Mater. Res. Technol., vol. 1, no. 1, pp. 55–62, 2012. DOI: https://doi.org/10.1016/S2238-7854(12)70010-8

(5) D. H. Shin, J. J. Park, Y. S. Kim, and K. T. Park, “Constrained groove pressing and its application to grain refinement of aluminum,” Mater. Sci. Eng. A, vol. 328, no. 1-2, pp. 98–103, 2002. DOI: https://doi.org/10.1016/S0921-5093(01)01665-3

(6) A. K. Gupta, T. S. Maddukuri, and S. K. Singh, “Constrained groove pressing for sheet metal processing,” Prog. Mater. Sci., vol. 84, pp. 403–462, 2016. DOI: https://doi.org/10.1016/j.pmatsci.2016.09.008

(7) G. G. Niranjan and U. Chakkingal, “Deep drawability of commercial purity aluminum sheets processed by groove pressing,” J. Mater. Process. Technol., vol. 210, no. 11, pp. 1511–1516, 2010. DOI: https://doi.org/10.1016/j.jmatprotec.2010.04.009

(8) A. Shirdel, A. Khajeh, and M. M. Moshksar, “Experimental and finite element investigation of semi-constrained groove pressing process,” Mater. Des., vol. 31, no. 2, pp. 946–950, 2010. DOI: https://doi.org/10.1016/j.matdes.2009.07.035

(9) S. C. Yoon, A. Krishnaiah, U. Chakkingal, and H. S. Kim, “Severe plastic deformation and strain localization in groove pressing,” Comput. Mater. Sci., vol. 43, no. 4, pp. 641–645, 2008. DOI: https://doi.org/10.1016/j.commatsci.2008.01.007

(10) A. Sajadi, M. Ebrahimi, and F. Djavanroodi, “Experimental and numerical investigation of Al properties fabricated by CGP process,” Mater. Sci. Eng. A, vol. 552, pp. 97–103, 2012. DOI: https://doi.org/10.1016/j.msea.2012.04.121

(11) Z. S. Wang, Y. J. Guan, G. C. Wang, and C. K. Zhong, “Influences of die structure on constrained groove pressing of commercially pure Ni sheets,” J. Mater. Process. Technol., vol. 215, no. 1, pp. 205–218, 2015. DOI: https://doi.org/10.1016/j.jmatprotec.2014.08.018

(12) Z. S. Wang, Y. J. Guan, and C. K. Zhong, “Effects of Friction on Constrained Groove Pressing of Pure Al Sheets,” Adv. Mater. Res., vol. 926-930, pp. 81–84, 2014. DOI: https://doi.org/10.4028/www.scientific.net/AMR.926-930.81

(13) H. R. Rezaei Ashtiani, S. Aradpur, and M. Rafiei, “The Effect of Groove Angles on Groove Pressing Process,” in International Conference on Mechanical Engineering and Advanced Technology, p. October 2012.

(14) M. Borhani and F. Djavanroodi, “Rubber pad-constrained groove pressing process: Experimental and finite element investigation,” Mater. Sci. Eng. A, vol. 546, pp. 1–7, 2012. DOI: https://doi.org/10.1016/j.msea.2012.02.089

(15) K. Peng, X. Mou, J. Zeng, L. L. Shaw, and K.-W. Qian, “Equivalent strain, microstructure and hardness of H62 brass deformed by constrained groove pressing,” Comput. Mater. Sci., vol. 50, no. 4, pp. 1526–1532, 2011. DOI: https://doi.org/10.1016/j.commatsci.2010.12.010

(16) S. Kumar, K. Hariharan, R. Kumar, and S. Kumar, “Accounting Bauschinger effect in the numerical simulation of constrained groove pressing process,” J. Manuf. Process. vol. 38, no. November 2018, pp. 49–62, 2019. DOI: https://doi.org/10.1016/j.jmapro.2018.12.013.