Simulation-based comparison of ADRC, PI, and PID controllers on a SEPIC converter: performance and complexity
Main Article Content
Introduction: SEPIC converters are widely used in power electronics due to their ability to either step up or step down voltage levels. However, their nonlinear behavior and the presence of a right-half-plane zero make it difficult to design fast and stable controllers. This study analyzes the performance of three control strategies applied to a SEPIC converter: Active Disturbance Rejection Control (ADRC), Proportional–Integral (PI), and Proportional–Integral–Derivative (PID).
Objectives: to compare the reference tracking capability, disturbance rejection, and implementation complexity of ADRC, PI, and PID controllers applied to a SEPIC DC-DC converter.
Materials and Methods: simulations were conducted in MATLAB/Simulink by introducing perturbations in both the power source and the output voltage. The performance indices IAE, ITAE, ISE, and ITSE were computed to quantify accuracy, speed, and robustness. The influence of ADRC tuning parameters, such as observer bandwidth and tracking differentiator speed, was also analyzed.
Results: the ADRC controller exhibited the fastest response and best disturbance rejection, although it showed inherent oscillations and higher design complexity. The PI controller achieved a good balance between simplicity and performance, while the PID controller displayed the slowest response but smoother behavior under disturbances.
Conclusions: ADRC is suitable for applications requiring fast and robust control performance. However, PI and PID controllers remain valid alternatives when simplicity or smoother control signals are prioritized.
- SEPIC converter
- ADRC
- PI
- PID
- Disturbance rejection
- Non-minimum phase systems
- Voltage control
- Power system control
- Simulation
Abolghasemi M, Soltani I, Shivaie M, Vahedi H. Recent advances of step-up multi-stage DC-DC converters: A review on classifications, structures and grid applications. Energy Reports. 2025;13:3050-81. doi: https://doi.org/10.1016/j.egyr.2025.02.025 DOI: https://doi.org/10.1016/j.egyr.2025.02.025
Wang R, Feng W, Nordman B, Gerber D, Li Y, Kang J, et al. Technology standards for direct current microgrids in buildings: A review. Renew Sustain Energy Rev. 2025;211:115278. doi:
https://doi.org/10.1016/j.rser.2024.115278 DOI: https://doi.org/10.1016/j.rser.2024.115278
Venkatesan M, R N, Kacor P, Vrzala M. Bidirectional wireless power transfer: Bridging electric vehicles and the grid through converter analysis, coil topologies, and communication protocol review. Results Eng. 2025;25:103803. doi: https://doi.org/10.1016/j.rineng.2024.103803 DOI: https://doi.org/10.1016/j.rineng.2024.103803
Yadav A, Verma A. Sepic DC-DC Converter: Review of Different Voltage Boosting Techniques and Applications. 2020;733-9. doi: https://doi.org/10.1109/ICIMIA48430.2020.9074897 DOI: https://doi.org/10.1109/ICIMIA48430.2020.9074897
Nazlıgül H, Mert ME, Edis C, Demir BN, Gurdal Y, Elattar KM, et al. Experimental and computational study of a solar-powered electrolysis system with a SEPIC converter for green hydrogen production. Sol Energy. 2025;298:113664. doi:
https://doi.org/10.1016/j.solener.2025.113664 DOI: https://doi.org/10.1016/j.solener.2025.113664
Khather S, A. Ibrahim M. Modeling and simulation of SEPIC controlled converter using PID controller. Int J Power Electron Drive Syst. 2020;11:833-43. doi:
https://doi.org/10.11591/ijpeds.v11.i2.pp833-843 DOI: https://doi.org/10.11591/ijpeds.v11.i2.pp833-843
Han J. From PID to active disturbance rejection control. IEEE Trans Ind Electron. 2009;56(3):900-6. https://doi.org/10.1109/TIE.2008.2011621 DOI: https://doi.org/10.1109/TIE.2008.2011621
Tu YH, Wang RF, Su WH. Active Disturbance Rejection Control-New Trends in Agricultural Cybernetics in the Future: A Comprehensive Review. Machines. 2025;13(2).
https://doi.org/10.3390/machines13020111 DOI: https://doi.org/10.3390/machines13020111
Fareh R, Khadraoui S, Abdallah MY, Baziyad M, Bettayeb M. Active disturbance rejection control for robotic systems: A review. Mechatronics. 2021;80:102671. doi:
https://doi.org/10.1016/j.mechatronics.2021.102671 DOI: https://doi.org/10.1016/j.mechatronics.2021.102671
The MathWorks Inc. 2024. 2024 [cited 2025 Jun 15]. Design Active Disturbance Rejection Control for SEPIC Converter. Available from:
https://la.mathworks.com/help/slcontrol/ug/design-adrc-for-sepic-converter.html
Awad N, Humaidi A, Al-Araji A. Modified Tracking Differentiator for Enhancing the Performance of Exoskeleton Knee System Based on Active Disturbance Rejection Control. Univ Baghdad Eng J. 2023;23:69-83. https://doi.org/10.33103/uot.ijccce.23.1.6 DOI: https://doi.org/10.33103/uot.ijccce.23.1.6
Kumar P, Ajmeri M. Active Disturbance Rejection Control of a SEPIC Converter. Shaw RN, Siano P, Makhilef S, Ghosh A, Shimi SL, editors. Innov Electr Electron Eng. 2024;367-80. doi:
https://doi.org/10.1007/978-981-99-8289-9_28 DOI: https://doi.org/10.1007/978-981-99-8289-9_28
Kumar P, Ajmeri M. Robust control of a single-ended primary inductor converter using adrc technique. Eng Res Express. 2023 Dec;6(1):15010. doi: https://doi.org/10.1088/2631-8695/ad153e DOI: https://doi.org/10.1088/2631-8695/ad153e
Patarroyo-Gutierrez LD, Gonzalez-Niño ME, Plazas JA. SEPIC Converter: Modeling and Control Considering Internal Energy Losses. Ing y Compet. 2024;26. doi:
https://doi.org/10.25100/iyc.v26i1.13016 DOI: https://doi.org/10.25100/iyc.v26i1.13016
LIU C, LUO G, CHEN Z, DING X. Overview on active disturbance rejection control for electro-mechanical actuation servo drive. Chinese J Aeronaut. 2025;38(7):103292. doi:
https://doi.org/10.1016/j.cja.2024.11.002 DOI: https://doi.org/10.1016/j.cja.2024.11.002
Herbst G, Madonski R. Active Disturbance Rejection Control: From Principles to Practice. 2025. doi: https://doi.org/10.1007/978-3-031-72687-3 DOI: https://doi.org/10.1007/978-3-031-72687-3
Tian G, Gao Z. Frequency Response Analysis of Active Disturbance Rejection Based Control System. 2007 IEEE Int Conf Control Appl. 2007 Oct;1595-9.
https://doi.org/10.1109/CCA.2007.4389465 DOI: https://doi.org/10.1109/CCA.2007.4389465
Herbst G. Transfer function analysis and implementation of active disturbance rejection control. Control Theory Technol. 2021 Feb;19(1):19-34. https://doi.org/10.1007/s11768-021-00031-5 DOI: https://doi.org/10.1007/s11768-021-00031-5
The MathWorks Inc. Design Active Disturbance Rejection Control for Boost Converter [Internet]. 2025 [cited 2025 Feb 23]. Available from: www.mathworks.com/help/slcontrol/ug/design-adrc-for-boost-converter.html
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).