Effect of pH and Ca and P ion concentration on the production of monetite from phosphate rock
Main Article Content
Introduction: monetite is a significant calcium phosphate phase known for its ability to be absorbed by bone tissues and to create a favorable environment for bone regeneration, positioning it as a biomaterial with high application potential.
Objectives: this study aims to obtain monetite directly from phosphate rock extracted in the Boyacá region of Colombia.
Methodology: leaching experiments were carried out using phosphoric rock and nitric acid at three different concentrations: 2, 4, and 5 M. The leach liquor was subsequently neutralized with sodium hydroxide (NaOH) at three different pH ranges: 3–4, 4–5, and 6–7. The obtained products were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) to verify the presence of the monetite phase and its morphology.
Results: the results showed that the monetite phase exhibits higher stability within a pH range of 3 to 4. It was also determined that pure monetite (100%) can be obtained using NaOH concentrations of 2 M and 5 M. At neutral pH values, the precipitation and stability of other phases such as hydroxyapatite were observed.
Conclusions: the direct production of monetite from phosphate rock from Boyacá is feasible under controlled pH and concentration conditions, with the acidic range being the most favorable for monetite stability.
- pH
- phosphoric rock
- solutions
- leaching
- charcaterization
Xie C, Lu H, Li W, Yi-Min Z. The use of calcium phosphate-based biomaterials in implant dentistry. J Mater Sci Mater Med. 2011;23:853–62. doi:10.1007/s10856-011-4535-9.
Medvecky L, Stulajterova R, Giretova M, Sopcak T, Girman V. Reinforcement of hydroxyapatite ceramics by soaking green samples of tetracalcium phosphate/monetite mixture in aqueous solutions. Ceram Int. 2022;48(12):17776–88. doi:10.1016/j.ceramint.2022.03.048.
Ma MG, Zhu YJ, Chang J. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite. J Phys Chem B. 2006;110(29):14226–30. doi:10.1021/jp061738r.
Stulajterova R, Medvecky L, Giretova M, Sopcak T, Luptakova L, Bures R, et al. Characterization of tetracalcium phosphate/monetite biocement modified by magnesium pyrophosphate. Materials (Basel). 2022;15(7):2586. doi:10.3390/ma15072586.
Tas AC. Monetite (CaHPO4) synthesis in ethanol at room temperature. J Am Ceram Soc. 2009;92(12):2907–12. doi:10.1111/j.1551-2916.2009.03351.x.
Tortet L, Gavarri JR, Nihoul G, Dianoux AJ. Study of protonic mobility in CaHPO4·2H2O (brushite) and CaHPO4 (monetite) by infrared spectroscopy and neutron scattering. J Solid State Chem. 1997;132:SC977383.
Wang Z, Li Q, Ren S, Zhang H, Chen J, Li A, et al. Composite monetite/amorphous calcium phosphate bone cement promotes bone regeneration. Ceram Int. 2023;49(5):7888–904. doi:10.1016/j.ceramint.2022.10.296.
Zhou H, Yang L, Gbureck U, Bhaduri SB, Sikder P. Monetite, an important calcium phosphate compound–Its synthesis, properties and applications in orthopedics. Acta Biomater. 2021;127:41–55. doi:10.1016/j.actbio.2021.03.050.
Le HR, Chen KY, Wang CA. Effect of pH and temperature on the morphology and phases of co-precipitated hydroxyapatite. J Sol-Gel Sci Technol. 2012;61(3):592–9. doi:10.1007/s10971-011-2665-7.
Sakka S, Bouaziz J, Ben F. Mechanical properties of biomaterials based on calcium phosphates and bioinert oxides for applications in biomedicine. In: Advances in Biomaterials Science and Biomedical Applications. 2013. doi:10.5772/53088.
Mishchenko O, Yanovska A, Kosinov O, Maksymov D, Moskalenko R, Ramanavicius A, et al. Synthetic calcium–phosphate materials for bone grafting. Polymers (Basel). 2023;15:3822. doi:10.3390/polym15183822.
Shen J, Evangelista MF, Mkongo G, Wen H, Langford R, Rosair G, et al. Efficient defluoridation of water by Monetite nanorods. Adsorption. 2018;24(2):135–45. doi:10.1007/s10450-017-9928-8.
Tamimi F, Sheikh Z, Barralet J. Dicalcium phosphate cements: brushite and monetite. Acta Biomater. 2012;8(2):474–87. doi:10.1016/j.actbio.2011.08.005.
Suchanek K, Bartkowiak A, Perzanowski M, Marszałek M. From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach. Sci Rep. 2018;8(1). doi:10.1038/s41598-018-33936-4.
Akram M, Ahmed R, Shakir I, Ibrahim WAW, Hussain R. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci. 2014;49(4):1461–75. doi:10.1007/s10853-013-7864-x.
Le HR, Chen KY, Wang CA. Effect of pH and temperature on the morphology and phases of co-precipitated hydroxyapatite. J Sol-Gel Sci Technol. 2012;61(3):592–9. doi:10.1007/s10971-011-2665-7.
Dorozhkin SV. Calcium orthophosphate (CaPO4): occurrence and properties. Prog Biomater. 2016;5:9–70. doi:10.1007/s40204-015-0045-z.
Sergey V, Matthias E. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–46. doi:10.1002/1521-3773(20020902)41.
Gbureck U, Dembski S, Thull R, Barralet JE. Factors influencing calcium phosphate cement shelf-life. Biomaterials. 2005;26:3691–7. doi:10.1016/j.biomaterials.2004.09.036.
Kumar RR, Wang M. Biomimetic deposition of hydroxyapatite on brushite single crystals grown by the gel technique. Mater Lett. 2001;49:15–9. doi:10.1016/s0167-577x(00)00333-5.
Higuita LP, Vargas AF, Gil MJ, Giraldo LF. Synthesis and characterization of nanocomposite based on hydroxyapatite and monetite. Mater Lett. 2016;175:169–72. doi:10.1016/j.matlet.2016.04.011.
Duncan J, MacDonald JF, Hanna JV, Shirosaki Y, Hayakawa S, Osaka A, et al. The role of the chemical composition of monetite on the synthesis and properties of α-tricalcium phosphate. Mater Sci Eng C. 2014;34:123–9. doi:10.1016/j.msec.2013.08.038.
Dorozhkin S. Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 2011;1:121–64. doi:10.4161/biom.18790.
Macha IJ, Ozyegin L, Chou J, Samur R, Oktar FAIK, Ben-Nissan B. An alternative synthesis method for di calcium phosphate (Monetite) powders from mediterranean mussel (Mytilus galloprovincialis) shells. J Aust Ceram Soc. 2013;49(2):122–8. Available from: www.austceram.com/ACS-Journal.
Canillas M, Pena P, de Aza AH, Rodríguez MA. Calcium phosphates for biomedical applications. Bol Soc Esp Ceram Vidrio. 2017;56(3):91–112. doi:10.1016/j.bsecv.2017.05.001.
Avşar C, Gezerman AO. An evaluation of phosphogypsum (PG)-derived nanohydroxyapatite (HAP) synthesis methods and waste management as a phosphorus source in the agricultural industry. Medziagotyra. 2023;29(2):247–54. doi:10.5755/j02.ms.31695.
Bouchkira I, Latifi AM, Khamar L, Benjelloun S. Modeling and multi-objective optimization of the digestion tank of an industrial process for manufacturing phosphoric acid by wet process. Comput Chem Eng. 2022;156:107536. doi:10.1016/j.compchemeng.2021.107536.
Ryszko U, Rusek P, Kołodyńska D. Quality of phosphate rocks from various deposits used in wet phosphoric acid and P-fertilizer production. Materials (Basel). 2023;16(2):20793. doi:10.3390/ma16020793.
Javied S, Waheed S, Siddique N, Tufail M, Chaudhry MM, Irfan N. Elemental analysis of phosphate rocks: for sustainable agriculture in Pakistan. J Radioanal Nucl Chem. 2008;278(1):17–24. doi:10.1007/s10967-007-7205-0.
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).