Caracterización de capa blanca y marrón promovidas por un proceso de esmerilado a baja escala en laboratorio

Publicado: 20-01-2026

Contenido principal del artículo

Autores/as

Objetivos: El objetivo principal de este estudio fue promover la formación de capas de ataque blanco y marrón (White Etching Layer, WEL, y Brown Etching Layer, BEL) en acero perlítico R260 mediante un proceso de rectificado controlado en laboratorio, con el fin de analizar los cambios microestructurales y mecánicos desde la superficie hasta el material base.
Materiales y métodos: Se utilizó acero perlítico R260 empleado en la fabricación de rieles ferroviarios. Las capas transformadas se generaron mediante un proceso de rectificado controlado. La caracterización microestructural se realizó mediante microscopía óptica (LOM) y microscopía electrónica de barrido (SEM). La caracterización mecánica se llevó a cabo mediante ensayos de microdureza y nanoindentación desde la superficie rectificada hacia el volumen del material. Posteriormente, la zona WEL fue analizada mediante microscopía electrónica de transmisión (TEM) para identificar los cambios microestructurales en las diferentes zonas afectadas por el rectificado.
Resultados: Los resultados mostraron que es posible distinguir la WEL de la BEL no solo por sus características morfológicas observadas mediante LOM y SEM, sino también por sus propiedades mecánicas. Ambas capas presentaron valores de dureza y módulo de Young significativamente superiores a los del material base perlítico.
Conclusiones: Las transformaciones microestructurales inducidas por el rectificado se identificaron visualmente como WEL y BEL a través de variaciones en el contraste y la textura observadas mediante LOM y SEM. Estas capas se extendieron desde la superficie rectificada hasta profundidades cercanas a 30 µm y presentaron respuestas mecánicas diferenciadas, asociadas a cambios microestructurales intrínsecos generados por el proceso de rectificado.

J C Sánchez , Energy Research and Innovation Group – GIIEN, Institución Universitaria Pascual Bravo, Medellín Colombia

.

J.A. Jaramillo, Energy Research and Innovation Group – GIIEN, Institución Universitaria Pascual Bravo, Medellín Colombia

.

H. Estupiñán, Tribology and Surfaces Group, Universidad Nacional de Colombia, Medellín, Colombia

.

G. Hernández, Tribology and Surfaces Group, Universidad Nacional de Colombia, Medellín, Colombia

.

A. Toro, Tribology and Surfaces Group, Universidad Nacional de Colombia, Medellín, Colombia

.

V. Wilches, Materiales y Procesos Altenativos MAPA, Universidad EIA, Envigado, Colombia

.

1.
Caracterización de capa blanca y marrón promovidas por un proceso de esmerilado a baja escala en laboratorio. inycomp. 2026;27(3):e-21014972. doi:10.25100/iyc.v27i3.14972

1. Gschwandl TJ, Daves W, Antretter T, Bucher C, Künstner D. On the road towards understanding squats: residual stress state of rails. Procedia Structural Integrity. 2023;46:17-23.

https://doi.org/10.1016/j.prostr.2023.06.004 DOI: https://doi.org/10.1016/j.prostr.2023.06.004

2. Naseri R, Gedney BL, Asgari H, Rizos DC. Rail squat detection using hybrid processing of axle box acceleration measurements. Results in Engineering. 2025;26:105343.

https://doi.org/10.1016/j.rineng.2025.105343 DOI: https://doi.org/10.1016/j.rineng.2025.105343

3. Baltic S, Daves W. Squat initiation mechanism model in a rail-wheel contact. Eng Fract Mech. 2022;269:108525.

https://doi.org/10.1016/j.engfracmech.2022.108525 DOI: https://doi.org/10.1016/j.engfracmech.2022.108525

4. Grassie SL. Studs and squats: The evolving story. Wear. 2016;366-367:194-9.

https://doi.org/10.1016/j.wear.2016.03.021 DOI: https://doi.org/10.1016/j.wear.2016.03.021

5. Grassie SL, Fletcher DI, Hernandez EAG, Summers P. Studs: A squat-type defect in rails. Proc Inst Mech Eng F J Rail Rapid Transit. 2012;226(3):243-56.

https://doi.org/10.1177/0954409711421462 DOI: https://doi.org/10.1177/0954409711421462

6. Xie Y, Ding H, Shi Z, Meli E, Guo J, Liu Q, et al. A novel prediction method for rolling contact fatigue damage of the pearlite rail materials based on shakedown limits and rough set theory with cloud model. Int J Fatigue. 2025;190:108654.

https://doi.org/10.1016/j.ijfatigue.2024.108654 DOI: https://doi.org/10.1016/j.ijfatigue.2024.108654

7. Zhao X, Xing YH, Zhang X, Peng F, Xue HD, Han YL. Rail rolling contact fatigue on a Chinese heavy haul line: Observations, monitoring and simulations. Eng Fail Anal. 2025;167:109040.

https://doi.org/10.1016/j.engfailanal.2024.109040 DOI: https://doi.org/10.1016/j.engfailanal.2024.109040

8. Wang R, Tan Z, Tian Y, Zhang J, Gao Y, Shan A, et al. Study on rolling contact fatigue crack initiation and propagation in U75V rail treated by laminar plasma. Tribol Int. 2024;198:109879.

https://doi.org/10.1016/j.triboint.2024.109879 DOI: https://doi.org/10.1016/j.triboint.2024.109879

9. Yang J, Huo J, Yao D. Rail corrugation detection based on optimal position window and Weighted-bandwidth mode decomposition. Measurement. 2025;255:117888.

https://doi.org/10.1016/j.measurement.2025.117888 DOI: https://doi.org/10.1016/j.measurement.2025.117888

10. Zhang P, Li S, Ren F, Hajizad O, Dollevoet R, Li Z. Microstructural investigation into the damage mechanism of short pitch rail corrugation. Eng Fail Anal. 2025;174:109512.

https://doi.org/10.1016/j.engfailanal.2025.109512 DOI: https://doi.org/10.1016/j.engfailanal.2025.109512

11. Guan Q, Wen Z, Liu B, Wang H, Liang S. A new perspective on rail corrugation and its practical implications. Wear. 2025;564-565:205743.

https://doi.org/10.1016/j.wear.2025.205743 DOI: https://doi.org/10.1016/j.wear.2025.205743

12. Bedoya-Zapata AD, León-Henao H, Mesaritis M, Molina LF, Palacio M, Santa JF, et al. White Etching Layer (WEL) formation in different rail grades after grinding operations in the field. Wear. 2022;502-503:204371.

https://doi.org/10.1016/j.wear.2022.204371 DOI: https://doi.org/10.1016/j.wear.2022.204371

13. Liu JP, Huang H, Liu A, Ma SN, Ren Y, Ding HH, et al. Formation mechanism of white etching layers in pearlitic rail steels under continuous abrasion. Wear. 2025;572-573:206050.

https://doi.org/10.1016/j.wear.2025.206050

14. Saxena AK, Kumar A, Herbig M, Brinckmann S, Dehm G, Kirchlechner C. Micro fracture investigations of white etching layers. Mater Des. 2019;180:107892.

https://doi.org/10.1016/j.matdes.2019.107892 DOI: https://doi.org/10.1016/j.matdes.2019.107892

15. Ding HH, Fu ZK, Wang WJ, Guo J, Liu QY, Zhu MH. Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials. Wear. 2015;330-331:563-70.

https://doi.org/10.1016/j.wear.2014.12.043 DOI: https://doi.org/10.1016/j.wear.2014.12.043

16. Chang C, Chen B, Cai Y, Wang J. Experimental investigation of high-speed wheel-rail adhesion characteristics under large creepage and water conditions. Wear. 2024;540-541:205254.

https://doi.org/10.1016/j.wear.2024.205254 DOI: https://doi.org/10.1016/j.wear.2024.205254

17. Hu Y, Zhou L, Ding HH, Tan GX, Lewis R, Liu QY, et al. Investigation on wear and rolling contact fatigue of wheel-rail materials under various wheel/rail hardness ratio and creepage conditions. Tribol Int. 2020;143:106091.

https://doi.org/10.1016/j.triboint.2019.106091 DOI: https://doi.org/10.1016/j.triboint.2019.106091

18. Zhang SY, Feng ZJ, Wang WJ, Zhao HY, Ding HH, Liu QY, et al. Effects of varying normal loads on the rail rolling contact fatigue behavior under various frequencies and creepages. Wear. 2023;520-521:204670.

https://doi.org/10.1016/j.wear.2023.204670 DOI: https://doi.org/10.1016/j.wear.2023.204670

19. Schotsman B, Huisman J, Santofimia MJ, Petrov RH, Sietsma J. Microstructure evolution and damage development in the rails of a single-track railway line after preventive grinding. Wear. 2025;576-577:206101.

https://doi.org/10.1016/j.wear.2025.206101

20. Han ZY, Wang HH, Wang WJ, Zhang SY, Lin DM, Wang Y, et al. The correlation between material deformed microstructure and rolling contact fatigue crack propagation of U71Mn rail when matching with CL60 wheel. Tribol Int. 2024;200:110069.

https://doi.org/10.1016/j.triboint.2024.110069 DOI: https://doi.org/10.1016/j.triboint.2024.110069

21. Zhang X, Wu D, Xia Z, Zhang Y, Li Y, Wang J, et al. Microstructure characteristics and formation mechanisms of white etching layer (WEL) and brown etching layer (BEL) on martensite bearing raceway. Journal of Materials Research and Technology. 2023;25:4876-87.

https://doi.org/10.1016/j.jmrt.2023.06.217 DOI: https://doi.org/10.1016/j.jmrt.2023.06.217

22. Al-Juboori A, Li H, Zhu H. Formation of white etching layer on rails due to coupled thermal and mechanical actions. Wear. 2023;530-531:205063.

https://doi.org/10.1016/j.wear.2023.205063

23. Thiercelin L, Saint-Aimé L, Lebon F, Saulot A. Thermomechanical modelling of the tribological surface transformations in the railroad network (white etching layer). Mechanics of Materials. 2020;151(October):103636.

https://doi.org/10.1016/j.mechmat.2020.103636 DOI: https://doi.org/10.1016/j.mechmat.2020.103636

24. Pena LVW, Wang L, Mellor BG, Huang Y. White etching structures in annealed 52100 bearing steel arising from high-pressure torsion tests. Tribol Int. 2021;164:107187.

https://doi.org/10.1016/j.triboint.2021.107187 DOI: https://doi.org/10.1016/j.triboint.2021.107187

25. Wan LB, Li SX, Lu SY, Su YS, Shu XD, Huang HB. Case study: Formation of white etching layers in a failed rolling element bearing race. Wear. 2018;396-397(July 2017):126-34.

https://doi.org/10.1016/j.wear.2017.07.014 DOI: https://doi.org/10.1016/j.wear.2017.07.014

26. Li JG, Umemoto M, Todaka Y, Tsuchiya K. A microstructural investigation of the surface of a drilled hole in carbon steels. Acta Mater. 2007;55(4):1397-406.

https://doi.org/10.1016/j.actamat.2006.09.043 DOI: https://doi.org/10.1016/j.actamat.2006.09.043

27. Hosseini SB, Beno T, Klement U, Kaminski J, Ryttberg K. Cutting temperatures during hard turning-Measurements and effects on white layer formation in AISI 52100. J Mater Process Technol. 2014;214(6):1293-300.

https://doi.org/10.1016/j.jmatprotec.2014.01.016 DOI: https://doi.org/10.1016/j.jmatprotec.2014.01.016

28. Al-Juboori A, Zhu H, Li H, McLeod J, Pannila S, Barnes J. Microstructural investigation on a rail fracture failure associated with squat defects. Eng Fail Anal. 2023;151:107411.

https://doi.org/10.1016/j.engfailanal.2023.107411 DOI: https://doi.org/10.1016/j.engfailanal.2023.107411

29. Talebi N, Andersson B, Ekh M, Meyer KA. Influence of a highly deformed surface layer on RCF predictions for rails in service. Wear. 2025;578-579:206173.

https://doi.org/10.1016/j.wear.2025.206173 DOI: https://doi.org/10.1016/j.wear.2025.206173

30. Liu J, Ou J, Li J, Yu Z, He C, Li P, et al. Initiation and propagation mechanism of fish-scale-like fatigue cracks on a U75V quenched rail. Eng Fail Anal. 2025;174:109468.

https://doi.org/10.1016/j.engfailanal.2025.109468 DOI: https://doi.org/10.1016/j.engfailanal.2025.109468

31. Edjeou W, P.-O. L, Larsson R, A A. Effect of the rail surface topography on wear and fatigue. Wear. 2025;206218.

https://doi.org/10.1016/j.wear.2025.206218 DOI: https://doi.org/10.1016/j.wear.2025.206218

32. Kanematsu Y, Uehigashi N, Matsui M, Noguchi S. Influence of a decarburised layer on the formation of microcracks in railway rails: On-site investigation and twin-disc study. Wear. 2022;504-505:204427.

https://doi.org/10.1016/j.wear.2022.204427 DOI: https://doi.org/10.1016/j.wear.2022.204427

33. Tosangthum N, Krataitong R, Wila P, Koiprasert H, Buncham K, Kansuwan P, et al. Dry rolling-sliding wear behavior of ER9 wheel and R260 rail couple under different operating conditions. Wear. 2023;518-519:204636.

https://doi.org/10.1016/j.wear.2023.204636 DOI: https://doi.org/10.1016/j.wear.2023.204636

34. Carroll RI, Beynon JH. Rolling contact fatigue of white etching layer: Part 1. Crack morphology. Wear. 2007;262(9-10):1253-66.

https://doi.org/10.1016/j.wear.2007.01.003 DOI: https://doi.org/10.1016/j.wear.2007.01.003

35. Grassie SL. Squats and squat-type defects in rails: The understanding to date. Proc Inst Mech Eng F J Rail Rapid Transit. 2012;226(3):235-42.

https://doi.org/10.1177/0954409711422189 DOI: https://doi.org/10.1177/0954409711422189

36. Österle W, Rooch H, Pyzalla A, Wang L. Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchroton X-ray diffraction. Materials Science and Engineering A. 2001;303(1-2):150-7.

https://doi.org/10.1016/S0921-5093(00)01842-6 DOI: https://doi.org/10.1016/S0921-5093(00)01842-6

37. Lojkowski W, Djahanbakhsh M, Bürkle G, Gierlotka S, Zielinski W, Fecht HJ. Nanostructure formation on the surface of railway tracks. Materials Science and Engineering A. 2001;

https://doi.org/10.1016/S0921-5093(00)01947-X DOI: https://doi.org/10.1016/S0921-5093(00)01947-X

38. Zhang HW, Ohsaki S, Mitao S, Ohnuma M, Hono K. Microstructural investigation of white etching layer on pearlite steel rail. Materials Science and Engineering: A. 2006;421(1):191-9.

https://doi.org/10.1016/j.msea.2006.01.033 DOI: https://doi.org/10.1016/j.msea.2006.01.033

39. Wu J, Petrov RH, Naeimi M, Li Z, Dollevoet R, Sietsma J. Laboratory simulation of martensite formation of white etching layer in rail steel. Int J Fatigue. 2016;91:11-20.

https://doi.org/10.1016/j.ijfatigue.2016.05.016 DOI: https://doi.org/10.1016/j.ijfatigue.2016.05.016

40. Takahashi J, Kawakami K, Ueda M. Atom probe tomography analysis of the white etching layer in a rail track surface. Acta Mater. 2010;58(10):3602-12.

https://doi.org/10.1016/j.actamat.2010.02.030 DOI: https://doi.org/10.1016/j.actamat.2010.02.030

41. Masoumi M, Lima NB De, Tressia G, Sinatora A, Goldenstein H. Microstructure and crystallographic orientation evolutions below the superficial white layer of a used pearlitic rail. Journal of Materials Research and Technology. 2019;8(6):6275-88.

https://doi.org/10.1016/j.jmrt.2019.10.021 DOI: https://doi.org/10.1016/j.jmrt.2019.10.021

42. Newcomb SB, Stobbs WM. A transmission electron microscopy study of the white-etching layer on a rail head. Materials Science and Engineering. 1984;66(2):195-204.

https://doi.org/10.1016/0025-5416(84)90180-0 DOI: https://doi.org/10.1016/0025-5416(84)90180-0

43. Baumann G, Fecht HJ, Liebelt S. Formation of white-etching layers on rail treads. Wear. 1996;191(1-2):133-40.

https://doi.org/10.1016/0043-1648(95)06733-7 DOI: https://doi.org/10.1016/0043-1648(95)06733-7

44. Jaramillo J, Sánchez JC, Suárez-Bustamante FA, Vargas D, Vargas G, Toro A, et al. Implementation of the Magnetic Barkhausen Noise Technique for Microstructural Characterization of Rail Steel. J Nondestr Eval. 2025;44(2):42.

https://doi.org/10.1007/s10921-025-01184-y DOI: https://doi.org/10.1007/s10921-025-01184-y

45. Li S, Wu J, Petrov RH, Li Z, Dollevoet R, Sietsma J. “Brown etching layer”: A possible new insight into the crack initiation of rolling contact fatigue in rail steels? Eng Fail Anal. 2016;66:8-18.

https://doi.org/10.1016/j.engfailanal.2016.03.019 DOI: https://doi.org/10.1016/j.engfailanal.2016.03.019

46. Wang L. Microstructure and Residual Stress State in the Contact Zone of Rails and Wheels. 2002.

47. Steenbergen M, Dollevoet R. On the mechanism of squat formation on train rails - Part I: Origination. Int J Fatigue. 2013;47:361-72.

https://doi.org/10.1016/j.ijfatigue.2012.04.023 DOI: https://doi.org/10.1016/j.ijfatigue.2012.04.023

48. Thiercelin L, Cazottes S, Saulot A, Lebon F, Mercier F, Le Bourlot C, et al. Development of Temperature-Controlled Shear Tests to Reproduce White-Etching-Layer Formation in Pearlitic Rail Steel. Materials. 2022 Oct 1;15(19).

https://doi.org/10.3390/ma15196590 DOI: https://doi.org/10.3390/ma15196590

49. Liu JP, Huang H, Liu A, Ma SN, Ren Y, Ding HH, et al. Formation mechanism of white etching layers in pearlitic rail steels under continuous abrasion. Wear. 2025 Jul 1;572-573.

https://doi.org/10.1016/j.wear.2025.206050 DOI: https://doi.org/10.1016/j.wear.2025.206050

50. Zhou Y, Peng JF, Luo ZP, Cao BB, Jin XS, Zhu MH. Phase and microstructural evolution in white etching layer of a pearlitic steel during rolling-sliding friction. Wear. 2016;362-363:8-17.

https://doi.org/10.1016/j.wear.2016.05.007 DOI: https://doi.org/10.1016/j.wear.2016.05.007

51. Kumar A, Agarwal G, Petrov R, Goto S, Sietsma J, Herbig M. Microstructural evolution of white and brown etching layers in pearlitic rail steels. Acta Mater. 2019;171:48-64.

https://doi.org/10.1016/j.actamat.2019.04.012 DOI: https://doi.org/10.1016/j.actamat.2019.04.012

52. Baumann G, Zhong Y, Fecht HJ. Comparison between nanophase formation during friction induced surface wear and mechanical attrition of a pearlitic steel. Nanostructured Materials. 1996;7(1):237-44.

https://doi.org/10.1016/0965-9773(96)00305-4 DOI: https://doi.org/10.1016/0965-9773(96)00305-4

53. Schotsman B, Huisman J, Santofimia MJ, Petrov RH, Sietsma J. Microstructure evolution and damage development in the rails of a single-track railway line after preventive grinding. Wear. 2025 Aug 15;576-577.

https://doi.org/10.1016/j.wear.2025.206101 DOI: https://doi.org/10.1016/j.wear.2025.206101

54. Russo M, Saulot A, Sauvage X, Véron M, Rauch E, Thiercelin L, et al. Multiscale microstructural investigations of white and brown etching layers initiating the squat formation in pearlitic rail steels. Mater Charact. 2025 Nov 1;229.

https://doi.org/10.1016/j.matchar.2025.115477 DOI: https://doi.org/10.1016/j.matchar.2025.115477

55. Hieu Nguyen B, Al-Juboori A, Zhu H, Zhu Q, Li H, Tieu K. Formation mechanism and evolution of white etching layers on different rail grades. Int J Fatigue. 2022 Oct 1;163.

https://doi.org/10.1016/j.ijfatigue.2022.107100 DOI: https://doi.org/10.1016/j.ijfatigue.2022.107100

56. Al-Juboori A, Li H, Zhu H. Formation of white etching layer on rails due to coupled thermal and mechanical actions. Wear. 2023 Oct 15;530-531.

https://doi.org/10.1016/j.wear.2023.205063 DOI: https://doi.org/10.1016/j.wear.2023.205063

Downloads

Download data is not yet available.