Contenido principal del artículo

Autores

Introducción: las microalgas han emergido como una opción sostenible y eficaz para la agricultura, especialmente en su uso como biofertilizantes. Gracias a sus propiedades adaptativas y su capacidad para absorber nutrientes de manera eficiente, pueden ser aprovechadas para mejorar la calidad del suelo y promover el crecimiento de las plantas.
Objetivo: analizar las investigaciones indexadas sobre microalgas y su utilización como biofertilizantes en la agricultura.
Materiales y Métodos: se realizó inicialmente una búsqueda sistemática en la base de datos Scopus, focalizada en artículos relacionados con el tema de estudio. Posteriormente, se aplicó la herramienta Bibliometrix para el análisis bibliométrico.
Resultados: se identificaron 200 artículos relevantes, siendo India el país con mayor producción de publicaciones en este ámbito. También se investiga la aplicación de microalgas en el tratamiento de aguas residuales, promoviendo así la sostenibilidad agrícola. Las cianobacterias fijadoras de nitrógeno, como Nostoc y Anabaena, mejoran la fertilidad del suelo y reducen la necesidad de fertilizantes sintéticos, mientras que microalgas como Chlorella vulgaris y Spirulina platensis mejoran la productividad, la resistencia al estrés y la salud del suelo.
Conclusiones: a pesar de su potencial, las investigaciones sobre el uso de microalgas como biofertilizantes aún están en etapas tempranas de desarrollo. Se evidencia un creciente interés científico en su aplicación agrícola, pero se requiere profundizar en estudios para consolidar su implementación sostenible a escala productiva.

Adedibu PA. Ecological problems of agriculture: impacts and sustainable solutions. ScienceOpen Preprints. 2023. https://doi.org/10.14293/PR2199.000145.v1

Çakmakçı, R., Salık, M. A., & Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture, 13(5), 1073. 2023. https://doi.org/10.3390/agriculture13051073

Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Frontiers in Plant Science. 2023 Mar 30;14:1073546. https://doi.org/10.3389/fpls.2023.1073546

Ahmad S, Iqbal K, Kothari R, Singh HM, Sari A, Tyagi VV. A critical overview of upstream cultivation and downstream processing of algae-based biofuels: opportunity, technological barriers and future perspective. Journal of Biotechnology. 2022 Jun 10;351:74-98. https://doi.org/10.1016/j.jbiotec.2022.03.015

Srivastav AK, Das P, Srivastava AK. Future trends, innovations, and global collaboration. InBiotech and IoT: an introduction using cloud-driven labs 2024 Sep 25 (pp. 309-398). Berkeley, CA: Apress. https://doi.org/10.1007/979-8-8688-0527-1_10

Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC. Towards circular economy: Potential of microalgae–bacterial-based biofertilizer on plants. Journal of environmental management. 2024 Jan 1;349:119445. https://doi.org/10.1016/j.jenvman.2023.119445Get rights and content

Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M. Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Critical reviews in biotechnology. 2019 Nov 17;39(8):981-98. https://doi.org/10.1080/07388551.2019.1654972

Renganathan P, Gaysina LA, Holguín-Peña RJ, Sainz-Hernández JC, Ortega-García J, Rueda-Puente EO. Phycoremediated microalgae and cyanobacteria biomass as biofertilizer for sustainable agriculture: A holistic biorefinery approach to promote circular bioeconomy. Biomass. 2024 Sep 24;4(4):1047-77. https://doi.org/10.3390/biomass4040059

Kholssi R, Lougraimzi H, Grina F, Lorentz JF, Silva I, Castaño-Sánchez O, Marks EA. Green agriculture: a review of the application of micro-and macroalgae and their impact on crop production on soil quality. Journal of Soil Science and Plant Nutrition. 2022 Dec;22(4):4627-41. https://doi.org/10.1007/s42729-022-00944-3

Hamidah I, Pawinanto RE, Mulyanti B, Yunas J. A bibliometric analysis of micro electro mechanical system energy harvester research. Heliyon. 2021 Mar 1;7(3). https://doi.org/10.1016/j.heliyon.2021.e06406

Garcia-Gonzalez J, Sommerfeld M. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of applied phycology. 2016 Apr;28(2):1051-61. https://doi.org/10.1007/s10811-015-0625-2

Coppens J, Grunert O, Van Den Hende S, Vanhoutte I, Boon N, Haesaert G, De Gelder L. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of applied phycology. 2016 Aug;28(4):2367-77. https://doi.org/10.1007/s10811-015-0775-2

Dineshkumar R, Kumaravel R, Gopalsamy J, Sikder MN, Sampathkumar P. Microalgae as bio-fertilizers for rice growth and seed yield productivity. Waste and biomass valorization. 2018 May;9(5):793-800. https://doi.org/10.1007/s12649-017-9873-5

Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R, Babu S, Singh R, Shivay YS, Nain L. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental science and pollution research. 2016 Apr;23(7):6608-20. https://doi.org/10.1007/s11356-015-5884-6

El Arroussi H, Benhima R, Elbaouchi A, Sijilmassi B, EL Mernissi N, Aafsar A, Meftah-Kadmiri I, Bendaou N, Smouni A. Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). Journal of Applied Phycology. 2018 Oct;30(5):2929-41. https://doi.org/10.1007/s10811-017-1382-1

López-Hernández JF, Kean-Meng T, Asencio-Alcudia GG, Asyraf-Kassim M, Alvarez-González CA, Márquez-Rocha FJ. Sustainable microalgae and cyanobacteria biotechnology. Applied Sciences. 2022 Jul 7;12(14):6887. https://doi.org/10.3390/app12146887

Siddik, M. A., Sørensen, M., Islam, S. M., Saha, N., Rahman, M. A., & Francis, D. S. Expanded utilisation of microalgae in global aquafeeds. Reviews in Aquaculture, 16(1), 6-33, 2024. https://doi.org/10.1111/raq.12818

Bhuyan PP, Nayak R, Jena M, Pradhan B. Convoluted role of cyanobacteria as biofertilizer: An insight of sustainable agriculture. Vegetos. 2023 Jun;36(2):309-21. https://doi.org/10.1007/s42535-022-00415-1

Wang C, Qi M, Guo J, Zhou C, Yan X, Ruan R, Cheng P. The active phytohormone in microalgae: the characteristics, efficient detection, and their adversity resistance applications. Molecules. 2021 Dec 22;27(1):46. https://doi.org/10.3390/molecules27010046

Ding Y, Zhao W, Zhu G, Wang Q, Zhang P, Rui Y. Recent trends in foliar nanofertilizers: a review. Nanomaterials. 2023 Nov 6;13(21):2906. https://doi.org/10.3390/nano13212906

Coppens J, Grunert O, Van Den Hende S, Boon N, Haesaert G, De Gelder L. The application of microalgae as a slow-release fertilizer: tomato cultivation as a model. In1st International seminar on Algal Technologies for Wastewater Treatment and Resource Recovery 2015. UNESCO-IHE. Institute for Water Education. https://acortar.link/tOJvrC

Lara GB, Mógor Á, Amatussi JD, Cordeiro EC, Marques HM, Mógor G. Microalga improve the growth, yield, and contents of sugar, amino acid, and protein of tomato. Ciência e Agrotecnologia. 2022 Apr 20;46:e023821. https://doi.org/10.1590/1413-7054202246023821

Rachidi F, Benhima R, Sbabou L, El Arroussi H. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnology reports. 2020 Mar 1;25:e00426. https://doi.org/10.1016/j.btre.2020.e00426

El Arroussi H, Elbaouchi A, Benhima R, Bendaou N, Smouni A, Wahby I. Halophilic microalgae Dunaliella salina extracts improve seed germination and seedling growth of Triticum aestivum L. under salt stress. 2016 Nov 16 Acta Hortic. 1148, 13–26 https://doi.org/10.17660/ActaHortic.2016.1148.2

Chu Q, Lyu T, Xue L, Yang L, Feng Y, Sha Z, Yue B, Mortimer RJ, Cooper M, Pan G. Hydrothermal carbonization of microalgae for phosphorus recycling from wastewater to crop-soil systems as slow-release fertilizers. Journal of Cleaner Production. 2021 Feb 10;283:124627. https://doi.org/10.1016/j.jclepro.2020.124627

Kholssi R, Marks EA, Miñón J, Montero O, F. Lorentz J, Debdoubi A, Rad C. Biofertilizing effects of Anabaena cylindrica biomass on the growth and nitrogen uptake of wheat. Communications in Soil Science and Plant Analysis. 2022 May 31;53(10):1216-25. https://doi.org/10.1080/00103624.2022.2043350

Alharbi K, Hafez EM, Omara AE, Nehela Y. Composted bagasse and/or cyanobacteria-based bio-stimulants maintain barley growth and productivity under salinity stress. Plants. 2023 Apr 29;12(9):1827. https://doi.org/10.3390/plants12091827

Jochum M, Moncayo LP, Jo YK. Microalgal cultivation for biofertilization in rice plants using a vertical semi-closed airlift photobioreactor. PLoS One. 2018 Sep 12;13(9):e0203456. https://doi.org/10.1371/journal.pone.0203456

Lamb TI, Berghahn E, Pita FM, de Oliveira Neves L, dos Reis Blasi ÉA, Hofstetter JS, Dammann M, da Silva LC, Buffon G, Dullius A, Granada CE. Isolation and selection of microalgae capable of stimulating rice plant development and seed production. Algal Research. 2023 Jul 1;74:103203. https://doi.org/10.1016/j.algal.2023.103203

Minello LV, Kuntzler SG, Lamb TI, Neves CD, Berghahn E, da Paschoa RP, Silveira V, de Lima JC, Aguzzoli C, Sperotto RA. Rice plants treated with biochar derived from Spirulina (Arthrospira platensis) optimize resource allocation towards seed production. Frontiers in Plant Science. 2024 Sep 18;15:1422935. https://doi.org/10.3389/fpls.2024.1422935

Nayak M, Swain DK, Sen R. Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. Science of the Total Environment. 2019 Sep 10;682:475-84. https://doi.org/10.1016/j.scitotenv.2019.05.123

Viegas C, Gouveia L, Gonçalves M. Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Journal of Environmental Management. 2021 May 15;286:112187. https://doi.org/10.1016/j.jenvman.2021.112187

Ferreira A, Figueiredo D, Ferreira F, Marujo A, Bastos CR, Martin-Atanes G, Ribeiro B, Štěrbová K, Marques-dos-Santos C, Acién FG, Gouveia L. From piggery wastewater to wheat using microalgae towards zero waste. Algal Research. 2023 May 1;72:103153. https://doi.org/10.1016/j.algal.2023.103153

Dineshkumar R, Subramanian J, Gopalsamy J, Jayasingam P, Arumugam A, Kannadasan S, Sampathkumar P. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste and Biomass Valorization. 2019 May 1;10(5):1101-10. https://doi.org/10.1007/s12649-017-0123-7

Ekinci K, Erdal I, Uysal Ö, Uysal FÖ, Tunce H, Doğan A. Anaerobic digestion of three microalgae biomasses and assessment of digestates as biofertilizer for plant growth. Environmental progress & sustainable energy. 2019 May;38(3):e13024. https://doi.org/10.1002/ep.13024

de Siqueira Castro J, Calijuri ML, Mattiello EM, Ribeiro VJ, Assemany PP. Algal biomass from wastewater: soil phosphorus bioavailability and plants productivity. Science of the total environment. 2020 Apr 1;711:135088. https://doi.org/10.1016/j.scitotenv.2019.135088

Nivetha N, Shukla PS, Nori SS, Kumar S, Suryanarayan S. A red seaweed Kappaphycus alvarezii-based biostimulant (AgroGain®) improves the growth of Zea mays and impacts agricultural sustainability by beneficially priming rhizosphere soil microbial community. Frontiers in Microbiology. 2024 Apr 2;15:1330237. https://doi.org/10.3389/fmicb.2024.1330237

Abd Elhafiz A, Abd Elhafiz A, Gaur SS, Hamdany N, Osman M, Lakshmi TR. Chlorella vulgaris and Chlorella pyrenoidosa live cells appear to be promising sustainable biofertilizer to grow rice, lettuce, cucumber and eggplant in the UAE soils. Recent Research in Science and Technology. 2015;7:14-21. https://doi.org/10.19071/rrst.2015.v7.2919

Mógor ÁF, Ördög V, Lima GP, Molnár Z, Mógor G. Biostimulant properties of cyanobacterial hydrolysate related to polyamines. Journal of Applied Phycology. 2018 Feb;30(1):453-60. https://doi.org/10.1007/s10811-017-1242-z

Barone V, Baglieri A, Stevanato P, Broccanello C, Bertoldo G, Bertaggia M, Cagnin M, Pizzeghello D, Moliterni VM, Mandolino G, Fornasier F. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology. 2018 Apr;30(2):1061-71. https://doi.org/10.1007/s10811-017-1283-3

Srivastava S, Srivastava S, Bist V, Awasthi S, Chauhan R, Chaudhry V, Singh PC, Dwivedi S, Niranjan A, Agrawal L, Chauhan PS. Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). Journal of hazardous materials. 2018 Jun 5;351:177-87. https://doi.org/10.1016/j.jhazmat.2018.02.039

Alvarenga P, Martins M, Ribeiro H, Mota M, Guerra I, Cardoso H, Silva JL. Evaluation of the fertilizer potential of Chlorella vulgaris and Scenedesmus obliquus grown in agricultural drainage water from maize fields. Science of the Total Environment. 2023 Feb 25;861:160670. https://doi.org/10.1016/j.scitotenv.2022.160670

Díaz LE, Gonzalez JD, Morales-Gonzalez MP, Garzón-Castro CL. Harnessing the power of microalgae consortia for sustainable crop production: case study on lettuce (Lactuca sativa L.). Journal of Applied Phycology. 2024 Dec;36(6):3273-86. https://doi.org/10.1007/s10811-024-03308-9

Mostafa SS, El-Hassanin AS, Soliman AS, El-Chaghaby GA, Rashad S, Elgaml NM, Awad AA. Phycoremediation of potato industry wastewater for nutrient recovery, pollution reduction, and biofertilizer production for greenhouse cultivation of lettuce and celery in sandy soils. International Journal of Plant Biology. 2024 Jul 15;15(3):652-72. https://doi.org/10.3390/ijpb15030048

Gharib FA, Osama K, Sattar AM, Ahmed EZ. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity. Scientific Reports. 2024 Jan 16;14(1):1398. https://doi.org/10.1038/s41598-023-50040-4

Dineshkumar R, Subramanian J, Sampathkumar P. Prospective of Chlorella vulgaris to augment growth and yield parameters along with superior seed qualities in black gram, Vigna mungo (L.). Waste and Biomass Valorization. 2020 Apr;11(4):1279-87. https://doi.org/10.1007/s12649-018-0465-9

Lv J, Liu S, Feng J, Liu Q, Guo J, Wang L, Jiao X, Xie S. Effects of microalgal biomass as biofertilizer on the growth of cucumber and microbial communities in the cucumber rhizosphere. Turkish Journal of Botany. 2020;44(2):167-77. . https://doi.org/10.3906/bot-1906-1

Dineshkumar R, Subramanian J, Arumugam A, Ahamed Rasheeq A, Sampathkumar P. Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. Waste and Biomass Valorization. 2020 Jan;11(1):77-87. https://doi.org/10.1007/s12649-018-0466-8

Gemin LG, Mógor ÁF, Amatussi JD, De Lara GB, Mógor G. Organic onion growth, yield and storage improved by foliar sprays of microalgae and fulvic acid as a natural biofertilizer. Bioscience Journal. 2022 Jan 1;38(e38045):1981-3163. https://doi.org/10.14393/BJ-v38n0a2022-58854

Dasgan HY, Aldiyab A, Elgudayem F, Ikiz B, Gruda NS. Effect of biofertilizers on leaf yield, nitrate amount, mineral content and antioxidants of basil (Ocimum basilicum L.) in a floating culture. Scientific Reports. 2022 Dec 3;12(1):20917. https://doi.org/10.1038/s41598-022-24799-x

Sharma GK, Khan SA, Shrivastava M, Bhattacharyya R, Sharma A, Gupta DK, Kishore P, Gupta N. Circular economy fertilization: Phycoremediated algal biomass as biofertilizers for sustainable crop production. Journal of Environmental Management. 2021 Jun 1;287:112295. https://doi.org/10.1016/j.jenvman.2021.112295

Ma C, Cui H, Ren C, Yang J, Liu Z, Tang T, Ji C, Zhang C, Xue J, Li R. The seed primer and biofertilizer performances of living Chlorella pyrenoidosa on Chenopodium quinoa under saline-alkali condition. Journal of Applied Phycology. 2022 Jun;34(3):1621-34. https://doi.org/10.1007/s10811-022-02699-x

Lee Y, Cho G, Jo GS, Kwak YS. Effect of microalgae Chlorella fusca CHK0059 on the microbiota community in nursery strawberry. Horticulture, Environment, and Biotechnology. 2023 Aug;64(4):547-56. https://doi.org/10.1007/s13580-022-00490-y

Butzke VL, Ferreira A, de Oliveira Corrêa D, Furlan JM, Gouveia L, de Cássia de Souza Schneider R, Corbellini VA. Unlocking the potential of Euglena gracilis cultivated in piggery wastewater: biomass production, nutrient removal, and biostimulant potential in lettuce and tomato plants. Journal of Applied Phycology. 2024 Oct;36(5):2681-702. https://doi.org/10.1007/s10811-024-03286-y

Deepika P, MubarakAli D. Production and assessment of microalgal liquid fertilizer for the enhanced growth of four crop plants. Biocatal. Agric. Biotechnol. 2020 28, 101701. https://doi.org/10. 1016/j.bcab.2020.101701

Zarezadeh S, Moheimani NR, Jenkins SN, Hülsen T, Riahi H, Mickan BS. Microalgae and phototrophic purple bacteria for nutrient recovery from agri-industrial effluents: influences on plant growth, rhizosphere bacteria, and putative carbon-and nitrogen-cycling genes. Frontiers in plant science. 2019 Sep 27;10:1193. https://doi.org/10.3389/fpls.2019.01193

Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PN, Tay JH. Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renewable and Sustainable Energy Reviews. 2020 Feb 1;118:109563. https://doi.org/10.1016/j.rser.2019.109563

González-González LM, De-Bashan LE. Toward the enhancement of microalgal metabolite production through microalgae–bacteria consortia. Biology. 2021 Apr 1;10(4):282. https://doi.org/10.3390/biology10040282

Tong CY, Honda K, Derek CJ. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. Environmental research. 2023 Jul 1;228:115872. https://doi.org/10.1016/j.envres.2023.115872

Juszczuk-Kubiak E. Molecular aspects of the functioning of pathogenic bacteria biofilm based on quorum sensing (QS) signal-response system and innovative non-antibiotic strategies for their elimination. International Journal of Molecular Sciences. 2024 Feb 24;25(5):2655. https://doi.org/10.3390/ijms25052655

Singh H, Kumar N, Kumar A. Enhancing resource use efficiency in crops through plant functional traits. InPlant Functional Traits for Improving Productivity 2024 Apr 23 (pp. 97-117). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1510-7_6

Villanueva-González CE, Pérez-Olmos KN, Mollinedo MS, Lojka B. Exploring agroforestry and food security in Latin America: a systematic review. Environment, Development and Sustainability. 2024 Sep 9:1-7. https://doi.org/10.1007/s10668-024-05352-4

Borón V, Payán E, MacMillan D, Tzanopoulos J. Achieving sustainable development in rural areas in Colombia: Future scenarios for biodiversity conservation under land use change. Land use policy. 2016 Dec 31;59:27-37. https://doi.org/10.1016/j.landusepol.2016.08.017

Kholssi R, Marks EA, Miñón J, Montero O, Debdoubi A, Rad C. Biofertilizing effect of Chlorella sorokiniana suspensions on wheat growth. Journal of Plant Growth Regulation. 2019 Jun 15;38(2):644-9. https://doi.org/10.1007/s00344-018-9879-7

Salazar CA, Cardona YA, Osorio LA, Porras LM. Efecto de un Consorcio de cianobacterias sobre la obtención de biomasa vegetal de la gulupa (Passiflora edulis f. edulis sims) bajo condiciones de campo en el municipio de Marinilla-Antioquia. Hechos Microbiológicos. 2020 Oct 26;11(1 y 2):12-21. https://doi.org/10.17533/udea.hm.v11n1a02

González AR, Orozco AD, Gonzalez AI, Navas JD, Rodriguez YY, Isaza AV, Arrieta DV, Cárdenas DS. Efecto del extracto de Limnospira maxima sobre parámetros fisiológicos de Stevia Stevia rebaudiana Bert. y berenjena Solanum melongena L. bajo condiciones controladas. Temas agrarios. 2023 Dec 23;28(2):178-92. https://doi.org/10.21897/qcvsnn05

Habib K, Kumar S, Manikar N, Zutshi S, Fatma T. Biochemical effect of carbaryl on oxidative stress, antioxidant enzymes and osmolytes of cyanobacterium Calothrix brevissima. Bulletin of environmental contamination and toxicology. 2011 Dec;87(6):615-20. https://doi.org/10.1007/s00128-011-0410-0

Sharma NK, Tiwari SP, Tripathi K, Rai AK. Sustainability and cyanobacteria (blue-green algae): facts and challenges. Journal of Applied Phycology. 2011 Dec;23(6):1059-81. https://doi.org/10.1007/s10811-010-9626-3

Singh JS, Pandey VC, Singh DP. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, ecosystems & environment. 2011 Mar 1;140(3-4):339-53. https://doi.org/10.1016/j.agee.2011.01.017

Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories. 2014 May 8;13(1):66. https://doi.org/10.1186/1475-2859-13-66

Choudhary, K. K., & Dhar, D. W. Microbes in Soil and Their Agricultural Prospects. Hauppauge, NY, USA: Nova Publishers. 2015. https://acortar.link/P58LM5

Blanke, M. Biostimulants–a wide range from algae extracts to shrimp shells. Erwerbs-Obstbau, 2016 58, 81-87,

Yadav S, Rai S, Rai R, Shankar A, Singh S, Rai LC. Cyanobacteria: Role in agriculture, environmental sustainability, biotechnological potential and agroecological impact. InPlant-Microbe Interactions in Agro-Ecological Perspectives: Volume 2: Microbial Interactions and Agro-Ecological Impacts 2017 Dec 16 (pp. 257-277). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-6593-4_10

Satish L, Ramesh M. Algae-based extracts as a natural biostimulant for plant growth and development: Current and future prospects. InPhotobioreactors: Advancements, Applications and Research 2017 Jan 1 (pp. 1-13). Nova Science Publishers, Inc.

Choudhary P, Prajapati SK, Kumar P, Malik A, Pant KK. Development and performance evaluation of an algal biofilm reactor for treatment of multiple wastewaters and characterization of biomass for diverse applications. Bioresource technology. 2017 Jan 1;224:276-84. https://doi.org/10.1016/j.biortech.2016.10.078

Stiles WA, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Silkina A, Lupatsch I, Grünewald CF, Lovitt R, Chaloner T. Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Bioresource technology. 2018 Nov 1;267:732-42. https://doi.org/10.1016/j.biortech.2018.07.100

Righini H, Roberti R. Algae and cyanobacteria as biocontrol agents of fungal plant pathogens. InPlant microbe interface 2019. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_9

Saadaoui I, Sedky R, Rasheed R, Bounnit T, Almahmoud A, Elshekh A, Dalgamouni T, al Jmal K, Das P, Al Jabri H. Assessment of the algae-based biofertilizer influence on date palm (Phoenix dactylifera L.) cultivation. Journal of Applied Phycology. 2019 Feb;31(1):457-63. https://doi.org/10.1007/s10811-018-1539-6

Velu C, Cirés S, Brinkman DL, Heimann K. Effect of CO2 and metal-rich waste water on bioproduct potential of the diazotrophic freshwater cyanobacterium, Tolypothrix sp. Heliyon. 2019 Apr 1;5(4). https://doi:10.1016/j.heliyon.2019. e01549

Dilnashin H, Birla H, Hoat TX, Singh HB, Singh SP, Keswani C. Applications of agriculturally important microorganisms for sustainable crop production. InMolecular aspects of plant beneficial microbes in agriculture 2020. Academic Press. https://doi.org/10.1016/B978-0-12-818469-1.00033-X

Ali R. Role of recombinant DNA technology in biofertilizer production. InMicrobiota and biofertilizers: a sustainable continuum for plant and soil health 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-48771-3_9

Supraja KV, Behera B, Balasubramanian P. Efficacy of microalgal extracts as biostimulants through seed treatment and foliar spray for tomato cultivation. Industrial crops and products. 2020 Sep 1;151:112453. https://doi.org/10.1016/j.indcrop.2020.112453

Shamim A, Mahfooz S, Hussain A, Farooqui A. Ability of Alacclimatized immobilized Nostoc muscorum to combat abiotic stress and its potential as a biofertilizer. J Pure Appl Microbiol. 2020 Jun 1;14(2):1377-86. https://doi.org/10.22207/JPAM.14.2.35

Suleiman AK, Lourenço KS, Clark C, Luz RL, da Silva GH, Vet LE, Cantarella H, Fernandes TV, Kuramae EE. From toilet to agriculture: Fertilization with microalgal biomass from wastewater impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth. Resources, Conservation and Recycling. 2020 Oct 1;161:104924. https://doi.org/10.1016/j.resconrec.2020.104924

Chakraborty T, Akhtar N. Biofertilizers: Characteristic features and applications. Biofertilizers: Study and Impact. 2021 Jul 20:429-89. https://doi.org/10.1002/9781119724995.ch15

Ismail GS, Saber NE, Abdelrahim BI, Abou-Zeid HM. Influence of Cyanobacterial Biofertilizer on the Response of Zea mays Plant to Cadmium-stress. Egyptian Journal of Botany. 2021 Aug 1;61(2):391-404. https://doi.org/10.21608/ejbo.2020.41791.1553

Goemann HM, Gay JD, Mueller RC, Brookshire EN, Miller P, Poulter B, Peyton BM. Aboveground and belowground responses to cyanobacterial biofertilizer supplement in a semi‐arid, perennial bioenergy cropping system. GCB Bioenergy. 2021 Dec;13(12):1908-23. https://doi.org/10.1111/gcbb.12892

Sabarinathan KG, Gomathy M, Kumar DA, Kannan R, Aiyanathan KE. Cyanobacteria-Mediated Bioremediation of Problem Soils. InMicrobial Rejuvenation of Polluted Environment: Volume 1 2021 Jan 16 (pp. 141-152). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-7447-4_5

Gómez C, Guzmán‐Carrasco A, Lafarga T, Acién‐Fernández FG. Optimization of a new culture medium for the large‐scale production of protein‐rich Arthrospira platensis (Oscillatoriales, Cyanophyceae). Journal of Phycology. 2021 Apr;57(2):636-44. https://doi.org/10.1111/jpy.13111

Dagnaisser LS, Dos Santos MG, Rita AV, Chaves Cardoso J, De Carvalho DF, De Mendonça HV. Microalgae as bio-fertilizer: a new strategy for advancing modern agriculture, wastewater bioremediation, and atmospheric carbon mitigation. Water, Air, & Soil Pollution. 2022 Nov;233(11):477. https://doi.org/10.1007/s11270-022-05917-x

Morillas-España A, Villaró S, Ciardi M, Acién G, Lafarga T. Production of Scenedesmus almeriensis using pilot-scale raceway reactors located inside a greenhouse. Phycology. 2022 Jan 12;2(1):76-85. https://doi.org/10.3390/phycology2010005

Pekkoh J, Wichaphian A, Kamngoen A, Sriket N, Zin MT, Lomakool S, Maneechote W, Chromkaew Y, Pathom-aree W, Cheirsilp B, Srinuanpan S. Heterotrophic upcycling of hydroponic wastewater supplemented with glucose and indole-3-acetic acid into high-quality Chlorella biomass for zero-waste multiproduct microalgal biorefinery. Environmental Technology & Innovation. 2024 Nov 1;36:103813. https://doi.org/10.1016/j.eti.2024.103813

Braun JC, Colla LM. Use of microalgae for the development of biofertilizers and biostimulants. BioEnergy Research. 2023 Mar;16(1):289-310. https://doi.org/10.1007/s12155-022-10456-8

Liu Y, Liu X, Cui Y, Yuan W. Ultrasound for microalgal cell disruption and product extraction: A review. Ultrasonics Sonochemistry. 2022 Jun 1;87:106054. https://doi.org/10.1016/j.ultsonch.2022.106054

Osorio-Reyes JG, Valenzuela-Amaro HM, Pizaña-Aranda JJ, Ramírez-Gamboa D, Meléndez-Sánchez ER, López-Arellanes ME, Castañeda-Antonio MD, Coronado-Apodaca KG, Gomes Araújo R, Sosa-Hernández JE, Melchor-Martínez EM. Microalgae-based biotechnology as alternative biofertilizers for soil enhancement and carbon footprint reduction: Advantages and implications. Marine Drugs. 2023 Jan 28;21(2):93. https://doi.org/10.3390/md21020093

Sharma I, Sandeep, Bala R, Kundra N, Kaur T, Sharma A. Microalgae-mediated wastewater treatment for biofertilizer production. In: Singh, P., Verma, P., Singh, R.P. (eds) Wastewater Resource Recovery and Biological Methods. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-40198-5_11.

Mouga T, Simões F, Moreira V, Martins A, Ferreira C, Ramos R, Afonso C. Producing Cyanobacteria to Use as Biostimulants. Proceedings of the 2nd International Conference on Water Energy Food and Sustainability (ICoWEFS 2022). ICoWEFS 2022. Springer, Cham. https://doi.org/10.1007/978-3-031-26849-6_4

Just BS, Marks EA, Roquer-Beni L, Llenas L, Ponsà S, Vilaplana R. Biofertilization increases soil organic carbon concentrations: Results of a meta-analysis. International Journal of Agricultural Sustainability. 2024 Dec 31;22(1):2361578. https://doi.org/10.1080/14735903.2024.2361578

Wichaphian A, Kaewman N, Pathom-Aree W, Phinyo K, Pekkoh J, Chromkaew Y, Cheirsilp B, Srinuanpan S. Zero-waste biorefining co-products from ultrasonically assisted deep eutectic solvent-pretreated Chlorella biomass: Sustainable production of biodiesel and bio-fertilizer. Bioresource Technology. 2024 Sep 1;408:131163. https://doi.org/10.1016/j.biortech.2024.131163

EFSA Panel on Genetically Modified Organisms (GMO), Mullins E, Bresson JL, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Naegeli H, Nogué F. New developments in biotechnology applied to microorganisms. EFSA Journal. 2024 Jul;22(7):e8895. https://doi.org/10.2903/j.efsa.2024.8895

1.
Gelvez Carvajal GA, Suarez Quintana WH, Barajas-solano AF. Bibliometría de microalgas y cianobacterias como biofertilizantes. inycomp [Internet]. 10 de noviembre de 2025 [citado 6 de diciembre de 2025];27(3):e-30114884. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/14884

Descargas

Los datos de descargas todavía no están disponibles.