Amorphous silica production from Colombian rice husk: demonstration in scaled-up process Products
Main Article Content
Introduction: the agroindustry generates significant waste, posing environmental, health, and economic challenges. Among these, rice husk, a byproduct of the food industry, stands out due to its potential as a source of silicon. Due to its silicon content, rice husk offers a unique opportunity for sustainable energy production and the extraction of high-value products, such as amorphous silicon dioxide (SiO2). However, optimizing processes for its efficient conversion remains a challenge.
Objective: the aim of this study was to optimize the nitric acid concentration for the pretreatment of Colombian rice husk in order to produce high-purity amorphous SiO2 and demonstrate the feasibility of scaling up the process.
Methods: a two-stage process was developed, which involved treating rice husk with nitric acid, followed by calcination at 620 °C. The nitric acid concentration was optimized to achieve the highest SiO2 purity. Material characterization was performed using thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray fluorescence (XRF), and nitrogen adsorption-desorption. To assess the scalability of the process, the treatment was replicated on a larger scale using the optimized acid concentration.
Results: the optimized process using a nitric acid concentration of 0.2 M yielded amorphous SiO2 with a purity of 94.9% and a surface area of 298 m²/g. When scaled up, the process achieved SiO2 with a purity of 95.5%, confirming the feasibility of the methodology for industrial applications.
Conclusions: the treatment of rice husk with nitric acid followed by calcination proves to be an effective and scalable approach for producing high-purity amorphous SiO2. This process not only holds potential for industrial applications but also provides a sustainable solution for valorizing agroindustrial waste, contributing to the circular economy.
(1) Y. Song, S. Maskey, Y. G. Lee, D.-S. Lee, D.-T. Nguyen, and H.-J. Bae, “Optimizing bioconversion processes of rice husk into value-added products: D-psicose, bioethanol, and lactic acid,” Bioresour Technol, vol. 395, p. 130363, Mar. 2024, doi: 10.1016/j.biortech.2024.130363. DOI: https://doi.org/10.1016/j.biortech.2024.130363
(2) S. S. Shukla, R. Chava, S. Appari, B. A, and B. V. R. Kuncharam, “Sustainable use of rice husk for the cleaner production of value-added products,” J Environ Chem Eng, vol. 10, no. 1, p. 106899, Feb. 2022, doi: 10.1016/j.jece.2021.106899. DOI: https://doi.org/10.1016/j.jece.2021.106899
(3) L. Sun and K. Gong, “Silicon-Based Materials from Rice Husks and Their Applications,” Ind Eng Chem Res, vol. 40, no. 25, pp. 5861–5877, Dec. 2001, doi: 10.1021/ie010284b. DOI: https://doi.org/10.1021/ie010284b
(4) X. Wang, X. Chang, L. Ma, J. Bai, M. Liang, and S. Yan, “Global and regional trends in greenhouse gas emissions from rice production, trade, and consumption,” Environ Impact Assess Rev, vol. 101, p. 107141, Jul. 2023, doi: 10.1016/j.eiar.2023.107141. DOI: https://doi.org/10.1016/j.eiar.2023.107141
(5) S. Rajamani, S. S. N. Kolla, R. Gudivada, R. Raghunath, K. Ramesh, and S. A. Jadhav, “Valorization of Rice Husk to Value-Added Chemicals and Functional Materials,” Int J Environ Res, vol. 17, no. 1, p. 22, Feb. 2023, doi: 10.1007/s41742-023-00512-2. DOI: https://doi.org/10.1007/s41742-023-00512-2
(6) A. Daulay, Andriayani, Marpongahtun, and S. Gea, “Synthesis and application of silicon nanoparticles prepared from rice husk for lithium-ion batteries,” Case Studies in Chemical and Environmental Engineering, vol. 6, p. 100256, Dec. 2022, doi: 10.1016/j.cscee.2022.100256. DOI: https://doi.org/10.1016/j.cscee.2022.100256
(7) D. Tharani and M. Ananthasubramanian, “Influence of pre-treatment processes on the purity and characteristics of silica extracted from rice husk,” Biomass Convers Biorefin, vol. 14, no. 11, pp. 12517–12529, Jun. 2024, doi: 10.1007/s13399-022-03728-y. DOI: https://doi.org/10.1007/s13399-022-03728-y
(8) P. U. Nzereogu, A. D. Omah, F. I. Ezema, E. I. Iwuoha, and A. C. Nwanya, “Silica extraction from rice husk: Comprehensive review and applications,” Hybrid Advances, vol. 4, p. 100111, Dec. 2023, doi: 10.1016/j.hybadv.2023.100111. DOI: https://doi.org/10.1016/j.hybadv.2023.100111
(9) I. J. Fernandes, C. A. M. Moraes, J. R. J. Egea, and V. C. Sousa, “Production and characterization of silica materials from rice husk ash by different combustion processes,” Powder Technol, vol. 436, p. 119473, Mar. 2024, doi: 10.1016/j.powtec.2024.119473. DOI: https://doi.org/10.1016/j.powtec.2024.119473
(10) S. D. Genieva, S. Ch. Turmanova, A. S. Dimitrova, and L. T. Vlaev, “Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere,” J Therm Anal Calorim, vol. 93, no. 2, pp. 387–396, Aug. 2008, doi: 10.1007/s10973-007-8429-5. DOI: https://doi.org/10.1007/s10973-007-8429-5
(11) T. N. Ang, G. C. Ngoh, and A. S. M. Chua, “Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk,” Bioresour Technol, vol. 135, pp. 116–119, May 2013, doi: 10.1016/j.biortech.2012.09.045. DOI: https://doi.org/10.1016/j.biortech.2012.09.045
(12) S. abualnoun Ajeel, K. A. Sukkar, and N. K. Zedin, “Extraction of high purity amorphous silica from rice husk by chemical process,” IOP Conf Ser Mater Sci Eng, vol. 881, no. 1, p. 012096, Jul. 2020, doi: 10.1088/1757-899X/881/1/012096. DOI: https://doi.org/10.1088/1757-899X/881/1/012096
(13) I. Irzaman, I. Cahyani, A. Aminullah, A. Maddu, B. Yuliarto, and U. Siregar, “Biosilica Properties from Rice Husk using Various HCl Concentrations and Frequency Sources,” Egypt J Chem, vol. 63, no. 2, pp. 363–371, Feb. 2020, doi: 10.21608/ejchem.2019.8044.1679. DOI: https://doi.org/10.21608/ejchem.2019.8044.1679
(14) P. P. Nayak and A. K. Datta, “Synthesis of SiO2-Nanoparticles from Rice Husk Ash and its Comparison with Commercial Amorphous Silica through Material Characterization,” Silicon, vol. 13, no. 4, pp. 1209–1214, Apr. 2021, doi: 10.1007/s12633-020-00509-y. DOI: https://doi.org/10.1007/s12633-020-00509-y
(15) J. T. Librea, F. D. Dacanay, Z. Z. Martin, and L. L. Diaz, “Effect of Water and Acid Pre-treatment on the Physicochemical Properties of Rice Husk for Silica Extraction,” IOP Conf Ser Mater Sci Eng, vol. 540, no. 1, p. 012007, May 2019, doi: 10.1088/1757-899X/540/1/012007. DOI: https://doi.org/10.1088/1757-899X/540/1/012007
(16) N. S. M. Zarib, S. A. Abdullah*, and N. H. Jamil, “Extraction Of Silica From Rice Husk Via Acid Leaching Treatment,” May 2019, pp. 175–183. doi: 10.15405/epsbs.2019.05.02.16. DOI: https://doi.org/10.15405/epsbs.2019.05.02.16
(17) R. A. Bakar, R. Yahya, and S. N. Gan, “Production of High Purity Amorphous Silica from Rice Husk,” Procedia Chem, vol. 19, pp. 189–195, 2016, doi: 10.1016/j.proche.2016.03.092. DOI: https://doi.org/10.1016/j.proche.2016.03.092
(18) J. A. Santana Costa and C. M. Paranhos, “Systematic evaluation of amorphous silica production from rice husk ashes,” J Clean Prod, vol. 192, pp. 688–697, Aug. 2018, doi: 10.1016/j.jclepro.2018.05.028. DOI: https://doi.org/10.1016/j.jclepro.2018.05.028
(19) S. Chandrasekhar, P. N. Pramada, and L. Praveen, “Effect of organic acid treatment on the properties of rice husk silica,” J Mater Sci, vol. 40, no. 24, pp. 6535–6544, Dec. 2005, doi: 10.1007/s10853-005-1816-z. DOI: https://doi.org/10.1007/s10853-005-1816-z
(20) A. França, J. Schultz, R. Borges, F. Wypych, and A. Mangrich, “Rice Husk Ash as Raw Material for the Synthesis of Silicon and Potassium SlowRelease Fertilizer,” J Braz Chem Soc, 2017, doi: 10.21577/0103-5053.20170072. DOI: https://doi.org/10.21577/0103-5053.20170072
(21) C. G. Flores, H. Schneider, J. S. Dornelles, L. B. Gomes, N. R. Marcilio, and P. J. Melo, “Synthesis of potassium zeolite from rice husk ash as a silicon source,” Clean Eng Technol, vol. 4, p. 100201, Oct. 2021, doi: 10.1016/j.clet.2021.100201. DOI: https://doi.org/10.1016/j.clet.2021.100201
(22) DANE, “Boletin de Insumo Agricolas,” Bogota, 2017.
(23) S. Chandrasekhar, P. N. Pramada, and J. Majeed, “Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash,” J Mater Sci, vol. 41, no. 23, pp. 7926–7933, Dec. 2006, doi: 10.1007/s10853-006-0859-0. DOI: https://doi.org/10.1007/s10853-006-0859-0
(24) W. H. Kwan and Y. S. Wong, “Acid leached rice husk ash (ARHA) in concrete: A review,” Mater Sci Energy Technol, vol. 3, pp. 501–507, 2020, doi: 10.1016/j.mset.2020.05.001. DOI: https://doi.org/10.1016/j.mset.2020.05.001
- Santiago Mesa, Johana Arboleda, Sandra Amaya, Adriana Echavarría, NiZnFe and NiMgFe hydrotalcites modified with V and Cr as precusors of catalysts for oxidative dehydrogenation of propane , Ingeniería y Competitividad: Vol. 14 No. 2 (2012): Ingeniería y Competitividad
Accepted 2024-09-30
Published 2024-11-08
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).