Main Article Content

Authors

The exploration of the biodiversity of cyanobacteria and microalgae holds great promise for obtaining pigments of industrial interest. This study focused on the bioprospecting of these organisms to obtain pigments of industrial interest together with enriched biomass. We investigated the impact of photoperiod and concentration of C/N/P nutrient sources in heterotrophic cultures, controlling specific variables such as light intensity, volume, pH, temperature, air flow and time to produce phycobiliproteins in Arthrospira sp. and total carotenoids in Scenedesmus sp. using a nonfactorial Plackett‒Burman design in STATISTICA 7.0 software. The biomass concentration was determined by dry weight, while the concentrations of phycocyanin and carotenoids were determined spectrophotometrically at specific wavelengths. Heterotrophic cultures demonstrated superior productivity, with phycocyanin and carotenoids achieving percentages of 7% and 0.4% (w/w), respectively, and an R2 value of 0.99. Among the influential parameters, potassium diphosphate and sodium bicarbonate played pivotal roles in the final deposition of carotenoids and phycocyanin, respectively, yielding concentrations of 96.5 mg/L phycocyanin and 6.5 mg/L carotenoids. 

Jefferson E. Contreras-Ropero, Universidad Francisco de Paula Santander, Department of Environmental Sciences, Cúcuta, Colombia.

https://orcid.org/0000-0002-6617-6004

Andrés F. Barajas-Solano, Universidad Francisco de Paula Santander, Department of Environmental Sciences, Cúcuta, Colombia.

https://orcid.org/0000-0003-2765-9131

Janet B. García-Martínez, Universidad Francisco de Paula Santander, Department of Environmental Sciences, Cúcuta, Colombia.

https://orcid.org/0000-0001-6719-7408

Crisostomo Barajas-Ferrerira, Universidad Industrial de Santander, Department of Chemical Engineering, Bucaramanga, Colombia.

https://orcid.org/0000-0001-9505-9328

Fiderman Machuca-Martínez, Universidad del Valle, School of Natural Resources and Environment, Cali, Colombia.

https://orcid.org/0000-0002-4553-3957

1.
Contreras-Ropero JE, Barajas-Solano AF, García-Martínez JB, Barajas-Ferrerira C, Machuca-Martínez F. Production of industrial-interest colorants in microalgae and cyanobacteria: leveraging nutrient dynamics and photoperiod optimization. inycomp [Internet]. 2024 Jul. 25 [cited 2024 Nov. 18];26(2):e-21413679. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13679

Mesquita SDS, Teixeira CMLL, Servulo EFC. Carotenoids: Properties, applications and market. Rev Virtual Quim (Brazil). 2017;9(2):672-688. Disponible en: https://doi.org/10.21577/1984-6835.20170040

https://doi.org/10.21577/1984-6835.20170040 DOI: https://doi.org/10.21577/1984-6835.20170040

Carocho M, Barreiro MF, Morales P, Ferreira ICFR. Adding molecules to food, pros and cons: a review on synthetic and natural food additives. Compr rev food sci f (Estados Unidos). 2014;13(4):377-399. Disponible en: https://doi.org/10.1111/1541-4337.12065

https://doi.org/10.1111/1541-4337.12065 DOI: https://doi.org/10.1111/1541-4337.12065

Doguc DK, Aylak F, Ilhan I, Kulac E, Gultekin F. Are there any marked effects of prenatal exposure to food colourings on neurobehaviour and learning process in rat offspring. Nutr Neurosci (Inglaterra). 2015;18(1):12-21. Disponible en: https://doi.org/10.1179/1476830513Y.0000000095.

https://doi.org/10.1179/1476830513Y.0000000095 DOI: https://doi.org/10.1179/1476830513Y.0000000095

Khazi MI, Demirel Z, Dalay MC. Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. J Appl Phycol (Países Bajos). 2018;30(3):1513-23. Disponible en: https://doi.org/10.1007/s10811-018-1398-1

https://doi.org/10.1007/s10811-018-1398-1 DOI: https://doi.org/10.1007/s10811-018-1398-1

Mulders KJM, Lamers PP, Martens DE, Wijffels RH. Phototrophic pigment production with microalgae: Biological constraints and opportunities. J Phycol (Países Bajos). 2014;50(2):229-42. Disponible en: https://doi.org/10.1111/jpy.12173

https://doi.org/10.1111/jpy.12173 DOI: https://doi.org/10.1111/jpy.12173

Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res (Países Bajos). 2014;6:52-63. Disponible en: https://doi.org/10.1016/j.algal.2014.09.002.

https://doi.org/10.1016/j.algal.2014.09.002 DOI: https://doi.org/10.1016/j.algal.2014.09.002

Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol (Inglaterra). 2013;24(3):405-13. Disponible en: https://doi.org/10.1016/j.copbio.2013.04.004.

https://doi.org/10.1016/j.copbio.2013.04.004 DOI: https://doi.org/10.1016/j.copbio.2013.04.004

Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. H. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 2018;36(1), 54-67. https://doi.org/10.1016/j.biotechadv.2017.09.009

https://doi.org/10.1016/j.biotechadv.2017.09.009 DOI: https://doi.org/10.1016/j.biotechadv.2017.09.009

Flórez-Miranda, L., Cañizares-Villanueva, R. O., Melchy-Antonio, O., Martínez‐Jerónimo, F., & Flores-Ortíz, C. M. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus : potential for lutein production. Journal of Biotechnology. 2017;62, 67-74. https://doi.org/10.1016/j.jbiotec.2017.09.002

https://doi.org/10.1016/j.jbiotec.2017.09.002 DOI: https://doi.org/10.1016/j.jbiotec.2017.09.002

Pagels, F., Salvaterra, D., Amaro, H. M., & Guedes, A. C.. Pigments from microalgae. In Elsevier eBooks, 2020, 465-492. https://doi.org/10.1016/b978-0-12-818536-0.00018-x

https://doi.org/10.1016/B978-0-12-818536-0.00018-X DOI: https://doi.org/10.1016/B978-0-12-818536-0.00018-X

Beltrán-Rocha JC, Guajardo-Barbosa C, Quintal IDB, López-Chuken UJ. Biotratamiento de efluentes secundarios municipales utilizando microalgas: Efecto del pH, nutrientes (C, N y P) y enriquecimiento con CO2. Revista de Biologia Marina y Oceanografia. 2017;52(3):417-427. doi:10.4067/s0718-19572017000300001

https://doi.org/10.4067/S0718-19572017000300001 DOI: https://doi.org/10.4067/S0718-19572017000300001

Guarin-Villegas E, Remolina-Páez LM, Bermúdez-Castro JP, Mogollón-Londoño SO, Contreras-Ropero JE, García Martínez JB, Barajas-Solano AF. Efecto de la relación carbono/Nitrógeno en la producción de carotenoids en microalgas. Ingeniería y Competitividad. 2020;22(1):1-13. doi:10.25100/iyc.v22i1.8686

https://doi.org/10.25100/iyc.v22i1.8686 DOI: https://doi.org/10.25100/iyc.v22i1.8686

Rosales-Loaiza N, Guevara M, Lodeiros C, Morales E. Crecimiento y producción de metabolitos de la cianobacteria marina Synechococcus sp. (Chroococcales) en función de la irradiancia. Revista de Biología Tropical. 2008;56(2):421-429. Disponible en: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442008000200001&lng=en&tlng=es.

https://doi.org/10.15517/rbt.v56i2.5596 DOI: https://doi.org/10.15517/rbt.v56i2.5596

Contreras-Ropero JE, Lidueñez-Ballesteros VS, Rodríguez-Bohórquez AD, et al. The Effect of LEDs on Biomass and Phycobiliproteins Production in Thermotolerant Oscillatoria sp. Applied Sciences. 2022;12(22):11664. doi:10.3390/app122211664

https://doi.org/10.3390/app122211664 DOI: https://doi.org/10.3390/app122211664

Naranjo-briceño L, Rojas-tortolero D, González H, Torres R. Arthrospira platensis como biofactoría de metabolitos secundarios de interés farmacológico : el ácido pipecólico. Rev Latinoam Biotecnol Ambient y Algal (Mexico). 2010;1(1):64-90. Disponible en: http://www.solabiaa.org/ojs3/index.php/RELBAA/article/view/16.

Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal (Inglaterra). 2008;54(4):621-639. Disponible en: https://doi.org/10.1111/j.1365-313X.2008.03492.

https://doi.org/10.1111/j.1365-313X.2008.03492.x DOI: https://doi.org/10.1111/j.1365-313X.2008.03492.x

Moheimani NR, Borowitzka MA, Isdepsky A, Fon Sing S. Standard methods for measuring growth of algae and their composition. En: Borowitzka MA, Moheimani NR, editores. Algae for Biofuels and Energy. Springer, Dordrecht. 2013; pp. 265-284. Disponible en: http://dx.doi.org/10.1007/978-94-007-5479-9_16.

https://doi.org/10.1007/978-94-007-5479-9_16 DOI: https://doi.org/10.1007/978-94-007-5479-9_16

Přibyl P, Cepák V, Kaštánek P, Zachleder V. Elevated production of carotenoids by a new isolate of Scenedesmus sp. Algal Res (Países Bajos). 2015;11:22-27. Disponible en: https://doi.org/10.1016/j.algal.2015.05.020.

https://doi.org/10.1016/j.algal.2015.05.020 DOI: https://doi.org/10.1016/j.algal.2015.05.020

Chen C, Kao P, Tan C, Show P, Cheah W, Lee W, et al. Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Arthrospira platensis. Biochem Eng J (Países Bajos). 2016;112:78-85. Disponible en: https://doi.org/10.1016/j.bej.2016.04.009.

https://doi.org/10.1016/j.bej.2016.04.009 DOI: https://doi.org/10.1016/j.bej.2016.04.009

Bennett A, Bogobad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol (Estados Unidos). 1973;58(2):419-35. Disponible en: https://doi.org/10.1083/jcb.58.2.419.

https://doi.org/10.1083/jcb.58.2.419 DOI: https://doi.org/10.1083/jcb.58.2.419

Zarrouk C. Contribution à l'étude d'une cyanophycée : influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Arthrospira maxima (Setch et Gardner) Geitler. ed S.L.N.D (francia). 1996;85p.

Andersen RA, Berges JA, Harrison PJ, Watanabe MM. Recipes for Freshwater and Seawater Media. En: Andersen RA, editor. Algal Culturing Techniques. Springer, Dordrecht. 2005; pp. 429-538.

https://doi.org/10.1016/B978-012088426-1/50027-5 DOI: https://doi.org/10.1016/B978-012088426-1/50027-5

StatSoft, INC. STATISTICA. Data analysis software system. 2004. Disponible en: www.statsoft.com.

Zhang, X., Yuan, H., Guan, L., Wang, X., Wang, Y., Jiang, Z., Cao, L., & Zhang, X. Influence of photoperiods on microalgae biofilm: photosynthetic performance, biomass yield, and cellular composition. Energies. 2019:12(19), 3724. https://doi.org/10.3390/en12193724

https://doi.org/10.3390/en12193724 DOI: https://doi.org/10.3390/en12193724

Niangoran, U., Buso, D., Zissis, G., & Prudhomme, T. Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis). Oilseeds and Fats, Crops and Lipids/OCL. Oilseeds & Fats Crops and Lipids. 2021;28, 37. https://doi.org/10.1051/ocl/2021025

https://doi.org/10.1051/ocl/2021025 DOI: https://doi.org/10.1051/ocl/2021025

Vendruscolo, R. G., Fagundes, M. B., Maroneze, M. M., Nascimento, T. C. D., Menezes, C., Barin, J. S., Zepka, L. Q., Jacob‐Lopes, E., & Wagner, R. Scenedesmus obliquus metabolomics: effect of photoperiods and cell growth phases. Bioprocess and Biosystems Engineering. 2019; 42(5), 727-739. https://doi.org/10.1007/s00449-019-02076-y

https://doi.org/10.1007/s00449-019-02076-y DOI: https://doi.org/10.1007/s00449-019-02076-y

Carvalho AP, Silva SO, Baptista JM, Malcata FX. Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl Microbiol Biotechnol (Alemania). 2011;89(5):1275-88. https://doi.org/10.1007/s00253-010-3047-8.

https://doi.org/10.1007/s00253-010-3047-8 DOI: https://doi.org/10.1007/s00253-010-3047-8

Richmond A, Preiss K. The biotechnology of agriculture. Interdiscipl.Sci Rev (Inglaterra). 1980;5:60-69. https://doi.org/10.1179/030801880789767891.

https://doi.org/10.1179/030801880789767891 DOI: https://doi.org/10.1179/030801880789767891

Pinchasov-Grinblat Y, Hoffman R, Dubinsky Z. El efecto de la fotoaclimatación sobre la eficiencia del almacenamiento de energía fotosintética, determinada por la fotoacústica. ICES J. Mar. Sci (Estados Unidos). 2011;01(02):43-9. http://dx.doi.org/10.4236/ojms.2011.12005.

https://doi.org/10.4236/ojms.2011.12005 DOI: https://doi.org/10.4236/ojms.2011.12005

Woodall AA, Lee SW-M, Weesie RJ, Jackson MJ, Britton G. Oxidación de carotenoides por radicales libres: relación entre estructura y reactividad. Biochim Biophys Acta Gen Subj (Países Bajos). 1997;1336(1):33-42. https://doi.org/10.1016/S0304-4165(97)00006-8.

https://doi.org/10.1016/S0304-4165(97)00006-8 DOI: https://doi.org/10.1016/S0304-4165(97)00006-8

Hemlata, Fatma, T. Screening of Cyanobacteria for Phycobiliproteins and Effect of Different Environmental Stress on Its Yield. Bull Environ Contam Toxicol. 2009;83:509-515. https://doi.org/10.1007/s00128-009-9837-y

https://doi.org/10.1007/s00128-009-9837-y DOI: https://doi.org/10.1007/s00128-009-9837-y

Figueroa-Torres, G. M., Pittman, J. K., & Theodoropoulos, C. Optimisation of microalgal cultivation via nutrient-enhanced strategies: the biorefinery paradigm. Biotechnology for Biofuels. 2021;14(1). https://doi.org/10.1186/s13068-021-01912-2

https://doi.org/10.1186/s13068-021-01912-2 DOI: https://doi.org/10.1186/s13068-021-01912-2

P, Soundarapandian & Vasanthi, B. Effects of Chemical Parameters on Arthrospira platensis Biomass Production: Optimized Method for Phycocyanin Extraction. Int J Zool Res (India). 2008;4:1-11. https://doi.org/10.3923 / ijzr.2008.1.11.

https://doi.org/10.3923/ijzr.2008.1.11 DOI: https://doi.org/10.3923/ijzr.2008.1.11

Del Pilar Sánchez‐Saavedra M, Voltolina D. The growth rate, biomass production and composition of Chaetoceros sp. grown with different light sources. Aquacultural Engineering. 2006;35(2):161-165. doi:10.1016/j.aquaeng.2005.12.001

https://doi.org/10.1016/j.aquaeng.2005.12.001 DOI: https://doi.org/10.1016/j.aquaeng.2005.12.001

Fan, X., Cao, X., Chu, Y., Wu, P., & Xue, S. The Light Regime Effect on Triacylglycerol Accumulation of Isochrysis zhangjiangensis. Journal of Ocean University of China. 2019; 18(2), 474-480. https://doi.org/10.1007/s11802-019-3691-2

https://doi.org/10.1007/s11802-019-3691-2 DOI: https://doi.org/10.1007/s11802-019-3691-2

Chen, F., Zhang, Y. & Guo, S. Crecimiento y formación de ficocianina de Arthrospira platensis en cultivo fotoheterotrófico. Biotechnol Lett (Países Bajos). 1996;18:603-608. https://doi.org/10.1007/BF00140211

https://doi.org/10.1007/BF00140211 DOI: https://doi.org/10.1007/BF00140211

Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Sci (Irlanda). 2012;185-186:9-22. https://doi.org/10.1016/j.plantsci.2011.07.018.

https://doi.org/10.1016/j.plantsci.2011.07.018 DOI: https://doi.org/10.1016/j.plantsci.2011.07.018

Kumari A, Pathak AK, Guria C. Cost-Effective Cultivation of Arthrospira platensis Using NPK Fertilizer. Agricultural Research. 2015;4(3):261-271. doi:10.1007/s40003-015-0168-4

https://doi.org/10.1007/s40003-015-0168-4 DOI: https://doi.org/10.1007/s40003-015-0168-4

Zhang P, Sun Q, Ye D, Lian S. Effects of different bicarbonate on Arthrospira in CO2 absorption and microalgae conversion hybrid system. Frontiers In Bioengineering And Biotechnology. 2023;10. doi:10.3389/fbioe.2022.1119111

https://doi.org/10.3389/fbioe.2022.1119111 DOI: https://doi.org/10.3389/fbioe.2022.1119111

Manirafasha E, Murwanashyaka T, Ndikubwimana T, et al. Enhancement of cell growth and phycocyanin production in Arthrospira (Arthrospira) platensis by metabolic stress and nitrate fed-batch. Bioresource Technology. 2018;255:293-301. doi:10.1016/j.biortech.2017.12.068

https://doi.org/10.1016/j.biortech.2017.12.068 DOI: https://doi.org/10.1016/j.biortech.2017.12.068

Akgül, F., & Akgül, R. Combined effect of nitrogen and phosphorus on growth and biochemical composition of Tetradesmus obliquus (Turpin) M.J. Wynne. International Journal of Secondary Metabolite. 2022;9(4),525-537. https://doi.org/10.21448/ijsm.1102592

https://doi.org/10.21448/ijsm.1102592 DOI: https://doi.org/10.21448/ijsm.1102592

Coulombier, N., Nicolau, É., Déan, L. L., Barthelemy, V., Schreiber, N., Brun, P., Lebouvier, N., & Jauffrais, T. Effects of Nitrogen Availability on the Antioxidant Activity and Carotenoid Content of the Microalgae Nephroselmis sp. Marine Drugs. 2020;18(9), 453. https://doi.org/10.3390/md18090453

https://doi.org/10.3390/md18090453 DOI: https://doi.org/10.3390/md18090453

Yaakob, M. A., Mohamed, R. M. S. R., Gokare, R. A., & Rao, A. R. (2021). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells. 2021;10(2), 393. https://doi.org/10.3390/cells10020393

https://doi.org/10.3390/cells10020393 DOI: https://doi.org/10.3390/cells10020393

Chia MA, Lombardi AT, Da Graça Gama Melão M. Growth and biochemical composition of Chlorella vulgaris in different growth media. Anais Da Academia Brasileira de Ciencias. 2013;85(4):1427-1438. doi:10.1590/0001-3765201393312

https://doi.org/10.1590/0001-3765201393312 DOI: https://doi.org/10.1590/0001-3765201393312

Received 2024-04-01
Accepted 2024-07-22
Published 2024-07-25