Main Article Content

Authors

Coffee is one of the most traded agricultural products internationally; in Colombia, it is the first non-mining-energy export product. In this context, the prediction of coffee crop yields is vital for the sector since it allows coffee growers to establish crop management strategies, maximizing their profits or reducing possible losses. This paper addresses crucial aspects of coffee crop yield prediction through a systematic literature review of documents consulted in Scopus, ACM, Taylor & Francis, and Nature. These documents were subjected to a filtering and evaluation process to answer five key questions: predictor variables used, target variable, techniques and algorithms employed, metrics to evaluate the quality of the prediction, and types of coffee reported. The results reveal different groups of predictor variables, including atmospheric, chemical, satellite-derived, fertilizer-related, soil, crop management, and shadow factors. The most recurrent target variable is yield, measured in bean weight per hectare or other measures, with one case considering leaf area. Predominant techniques for yield forecasting include linear regression, random forests, principal component analysis, cluster regression, neural networks, classification and regression trees, and extreme learning machines, among others. The most common metrics to evaluate the quality of predictive models include R², RMSE, MAE, MAPE, MRE, error deviation, Pearson's correlation coefficient, and standard deviation. Finally, robusta, arabica, racemosa, and zanguebariae are the most studied coffee varieties.

1.
Muñoz Ordoñez CC, Cobos Lozada CA, Muñoz Ordóñez JF. Forecast yield prediction of coffee crops: a systematic mapping. inycomp [Internet]. 2023 Jun. 26 [cited 2024 Dec. 22];25(3):e-30513171. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13171

OEC. Coffee OEC - The Observatory of Economic Complexity [Internet]. 2022 [cited 2022 Oct 9]. Available from: https://oec.world/en/profile/hs/coffee

Sporchia F, Caro D, Bruno M, Patrizi N, Marchettini N, Pulselli FM. Estimating the impact on water scarcity due to coffee production, trade, and consumption worldwide and a focus on EU. J Environ Manage. 2023 Feb 1;327:116881. DOI: https://doi.org/10.1016/j.jenvman.2022.116881

Allen L. Coffee Statistics: Consumption, Preferences, & Spending [Internet]. 2023 [cited 2023 Jul 20]. Available from: https://www.driveresearch.com/market-research-company-blog/coffee-survey/

Collins M. 90 U.S Coffee Statistics You Should Know - New Infographics [Internet]. 2022 [cited 2023 Jul 20]. Available from: https://www.perfectbrew.com/blog/coffee-statistics-infographic/

Ali AA, Student PD, Kannaji Rao C V, Ravi J. Factors Influencing Members’ Economic Satisfaction In Cooperatives: The Case Of Oromia Coffee Farmer Cooperative Union In Oromia Regional State Of Ethiopia. Seybold Report Journal. 2023;18(04):147–72.

ECF. International Trade [Internet]. 2022 [cited 2022 Oct 9]. Available from: https://www.ecf-coffee.org/about/international-trade/

International Trade Centre. The Coffee Guide Fourth edition TRADE IMPACT FOR GOOD. 2021 Oct [cited 2023 Jul 21]; Available from: http://www.intracen.org

Bacsi Z, Fekete-Farkas M, Ma’ruf MI. A Graph-Based Network Analysis of Global Coffee Trade—The Impact of COVID-19 on Trade Relations in 2020. Sustainability 2023, Vol 15, Page 3289 [Internet]. 2023 Feb 10 [cited 2023 Jul 20];15(4):3289. Available from: https://www.mdpi.com/2071-1050/15/4/3289/htm DOI: https://doi.org/10.3390/su15043289

Utrilla-Catalan R, Rodríguez-Rivero R, Narvaez V, Díaz-Barcos V, Blanco M, Galeano J. Growing Inequality in the Coffee Global Value Chain: A Complex Network Assessment. Sustainability 2022, Vol 14, Page 672 [Internet]. 2022 Jan 8 [cited 2023 Jul 20];14(2):672. Available from: https://www.mdpi.com/2071-1050/14/2/672/htm DOI: https://doi.org/10.3390/su14020672

Ministerio de Comercio I y TC. Perfiles económicos y comerciales. 2022 Apr 6 [cited 2023 Jul 21];1–9. Available from: https://bit.ly/45tHbuj

Rendón JCM, Villalobos CFA, Ledesma FAR. Mirada a los aspectos económicos, financieros, sociales y ambientales del cultivo del café en Colombia - 2022. Documentos de Trabajo ECACEN [Internet]. 2023 Jun 21 [cited 2023 Jul 22];(1):144–61. Available from: https://hemeroteca.unad.edu.co/index.php/working/article/view/6938

Ghoshray, Atanu. Trends and persistence of farm-gate coffee prices around the world. 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium [Internet]. 2022 [cited 2023 Jul 22]; Available from: https://ideas.repec.org/p/ags/aesc22/321166.html

Gilbert CL. International Commodity Agreements: An obituary notice. World Dev. 1996 Jan 1;24(1):1–19. DOI: https://doi.org/10.1016/0305-750X(95)00121-R

Echeverri Valencia MF, Hurtado Rivera I. Precio internacional del café, cambio climático y mercados financieros. Economía Colombiana Análisis de Coyuntura. 2021;41:1–12.

IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary [Internet]. Cambridge University Press CUK and NYNU, editor. 2021 [cited 2023 Jul 9]. 33–144 p. Available from: https://bit.ly/3KI8YPE

Eftekhari MS. Impacts of Climate Change on Agriculture and Horticulture. Climate Change: The Social and Scientific Construct [Internet]. 2022 Jan 1 [cited 2023 Jul 22];117–31. Available from: https://link.springer.com/chapter/10.1007/978-3-030-86290-9_8 DOI: https://doi.org/10.1007/978-3-030-86290-9_8

Kath J, Mittahalli Byrareddy V, Mushtaq S, Craparo A, Porcel M. Temperature and rainfall impacts on robusta coffee bean characteristics. Clim Risk Manag. 2021 Jan 1;32:100281. DOI: https://doi.org/10.1016/j.crm.2021.100281

Malek Ž, Loeffen M, Feurer M, Verburg PH. Regional disparities in impacts of climate extremes require targeted adaptation of Fairtrade supply chains. One Earth. 2022 Aug 19;5(8):917–31. DOI: https://doi.org/10.1016/j.oneear.2022.07.008

Gyarmati G, Mizik T. The present and future of the precision agriculture. SOSE 2020 - IEEE 15th International Conference of System of Systems Engineering, Proceedings. 2020 Jun 1;593–6. DOI: https://doi.org/10.1109/SoSE50414.2020.9130481

Sott MK, Furstenau LB, Kipper LM, Giraldo FD, Lopez-Robles JR, Cobo MJ, et al. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access. 2020;8:149854–67. DOI: https://doi.org/10.1109/ACCESS.2020.3016325

Javaid M, Haleem A, Singh RP, Suman R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks. 2022 Jan 1;3:150–64. DOI: https://doi.org/10.1016/j.ijin.2022.09.004

Valentini R, Sievenpiper JL, Antonelli M, Dembska K. Achieving the sustainable development goals through sustainable food systems. Achieving the Sustainable Development Goals Through Sustainable Food Systems. 2019 Oct 10;1–262. DOI: https://doi.org/10.1007/978-3-319-70060-1_22-1

Santhosh CS, Umesh KK. A Compendium Probabilistic Prospective for Predicting Coffee Crop Yield Based on Agronomical Factors. 4th International Conference on Emerging Research in Electronics, Computer Science and Technology, ICERECT 2022. 2022;

Renju RS, Deepthi PS, Chitra MT. A Review of Crop Yield Prediction Strategies based on Machine Learning and Deep Learning. Proceedings of International Conference on Computing, Communication, Security and Intelligent Systems, IC3SIS 2022. 2022; DOI: https://doi.org/10.1109/IC3SIS54991.2022.9885325

de Carvalho Alves M, Sanches L, Pozza EA, Pozza AAA, da Silva FM. The role of machine learning on Arabica coffee crop yield based on remote sensing and mineral nutrition monitoring. Biosyst Eng. 2022 Sep 1;221:81–104.

Nazirul M, Sarker I, Wu M, Alam GMM, Islam S. Role of climate smart agriculture in promoting sustainable agriculture: a systematic literature review. Int J Agricultural Resources. 2019;15(4):323–37. DOI: https://doi.org/10.1504/IJARGE.2019.10025851

Kitchenham B. Source: “Guidelines for performing Systematic Literature Reviews in SE”, Kitchenham et al Guidelines for performing Systematic Literature Reviews in Software Engineering. 2007;

Le VH, Truong CT, Le AH, Nguyen BT. A Combination of Shade Trees and Soil Characteristics May Determine Robusta Coffee (Coffea canephora) Yield in a Tropical Monsoon Environment. Agronomy [Internet]. 2023 Jan 1 [cited 2023 May 27];13(1):65. Available from: https://www.mdpi.com/2073-4395/13/1/65/htm

Chavez E, Wade J, Miernicki EA, Torres M, Stanek EC, Subía C, et al. Apparent nitrogen limitation of Robusta coffee yields in young agroforestry systems. Agron J [Internet]. 2021 Nov 1 [cited 2023 May 22];113(6):5398–411. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/agj2.20725 DOI: https://doi.org/10.1002/agj2.20725

Piato K, Subía C, Lefort F, Pico J, Calderón D, Norgrove L. No Reduction in Yield of Young Robusta Coffee When Grown under Shade Trees in Ecuadorian Amazonia. Life [Internet]. 2022 Jun 1 [cited 2023 May 22];12(6):807. Available from: https://www.mdpi.com/2075-1729/12/6/807/htm DOI: https://doi.org/10.3390/life12060807

Khusnul K, Suratno, Asyiah NI, Hariyadi S. Analysis of the Effect of Several Types of Shade on the Productivity of Robusta Coffee. JPhCS [Internet]. 2021 Jan 27 [cited 2023 Jun 25];1751(1):012060. Available from: https://ui.adsabs.harvard.edu/abs/2021JPhCS1751a2060K/abstract DOI: https://doi.org/10.1088/1742-6596/1751/1/012060

Venancio LP, Do Amaral JFT, Cavatte PC, Vargas CT, Dos Reis EF, Dias JR. Vegetative growth and yield of robusta coffee genotypes cultivated under different shading levels. Biosci j (Online) [Internet]. 2019 Sep 1 [cited 2023 Jun 25];35(5):1490–503. Available from: http://www.seer.ufu.br/index.php/biosciencejournal/article/view/45039/27073 DOI: https://doi.org/10.14393/BJ-v35n5a2019-45039

Dinh TLA, Aires F, Rahn E. Statistical Analysis of the Weather Impact on Robusta Coffee Yield in Vietnam. Front Environ Sci. 2022 Jun 20;10:880.

Kouadio L, Tixier P, Byrareddy V, Marcussen T, Mushtaq S, Rapidel B, et al. Performance of a process-based model for predicting robusta coffee yield at the regional scale in Vietnam. Ecol Modell. 2021 Mar 1;443:109469. DOI: https://doi.org/10.1016/j.ecolmodel.2021.109469

De Oliveira Aparecido LE, De G, Rolim S, Paulo AP, Castellane D. Forecasting of the annual yield of Arabic coffee using water deficiency. Pesqui Agropecu Bras [Internet]. 2018 Dec 1 [cited 2023 Jun 25];53(12):1299–310. Available from: https://www.scielo.br/j/pab/a/xH8kJPvgLvyZNHMYkmWp5qy/?lang=en DOI: https://doi.org/10.1590/s0100-204x2018001200002

Kittichotsatsawat Y, Tippayawong N, Tippayawong KY. Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques. Scientific Reports 2022 12:1 [Internet]. 2022 Aug 25 [cited 2023 Jun 25];12(1):1–14. Available from: https://www.nature.com/articles/s41598-022-18635-5

Santhosh CS, Umesh KK. A Compendium Probabilistic Prospective for Predicting Coffee Crop Yield Based on Agronomical Factors. 2023 Mar 15;1–8. DOI: https://doi.org/10.1109/ICERECT56837.2022.10060420

Molina ALV, Peralta VPP, Orozco ABP, Iglesias MIO, Guerrero EG. Calibration of the aquacrop model in special coffee (Coffea Arabica) crops in the sierra nevada of Santa Marta, Colombia. Journal of Agronomy. 2018;17(4):241–50. DOI: https://doi.org/10.3923/ja.2018.241.250

Kath J, Craparo A, Fong Y, Byrareddy V, Davis AP, King R, et al. Vapour pressure deficit determines critical thresholds for global coffee production under climate change. Nature Food 2022 3:10 [Internet]. 2022 Oct 13 [cited 2023 Jun 25];3(10):871–80. Available from: https://www.nature.com/articles/s43016-022-00614-8 DOI: https://doi.org/10.1038/s43016-022-00614-8

Kath J, Byrareddy VM, Craparo A, Nguyen-Huy T, Mushtaq S, Cao L, et al. Not so robust: Robusta coffee production is highly sensitive to temperature. Glob Chang Biol [Internet]. 2020 Jun 1 [cited 2023 Jun 25];26(6):3677–88. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15097 DOI: https://doi.org/10.1111/gcb.15097

Gonçalves MGM, Avalos FAP, dos Reis JV, Costa MV, Silva SHG, Poggere GC, et al. Pedology-based management class establishment: a study case in Brazilian coffee crops. Precis Agric [Internet]. 2022 Jun 1 [cited 2023 May 22];23(3):1027–50. Available from: https://link.springer.com/article/10.1007/s11119-021-09873-0 DOI: https://doi.org/10.1007/s11119-021-09873-0

Teixeira HM, Bianchi FJJA, Cardoso IM, Tittonell P, Peña-Claros M. Impact of agroecological management on plant diversity and soil-based ecosystem services in pasture and coffee systems in the Atlantic forest of Brazil. Agric Ecosyst Environ. 2021 Jan 1;305:107171. DOI: https://doi.org/10.1016/j.agee.2020.107171

López López R, Arteaga Ramírez R, Vázquez Peña MA, López Cruz I, Sánchez Cohen I. Índice de estrés hídrico como un indicador del momento de riego en cultivos agrícolas. Agricultura técnica en México [Internet]. 2009 [cited 2023 Aug 6];35(1):97–111. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0568-25172009000100010&lng=es&nrm=iso&tlng=es

de Carvalho Alves M, Sanches L, Pozza EA, Pozza AAA, da Silva FM. The role of machine learning on Arabica coffee crop yield based on remote sensing and mineral nutrition monitoring. Biosyst Eng. 2022 Sep 1;221:81–104. DOI: https://doi.org/10.1016/j.biosystemseng.2022.06.014

Kouadio L, Byrareddy VM, Sawadogo A, Newlands NK. Probabilistic yield forecasting of robusta coffee at the farm scale using agroclimatic and remote sensing derived indices. Agric For Meteorol. 2021 Aug 15;306:108449. DOI: https://doi.org/10.1016/j.agrformet.2021.108449

Castro R. Remote monitoring of coffee cultivation through computational processing of satellite images. Proceedings - 2019 7th International Engineering, Sciences and Technology Conference, IESTEC 2019. 2019 Oct 1;13–8. DOI: https://doi.org/10.1109/IESTEC46403.2019.00011

Wardani N, Hendra J, Rivaie AA. Improvement of robusta coffee performance with conservation and fertilizer treatment in Air Naningan District, Tanggamus Regency, Lampung. IOP Conf Ser Earth Environ Sci. 2021;648(1). DOI: https://doi.org/10.1088/1755-1315/648/1/012040

Kishor M, Jayakumar M, Gokavi N, Mukharib DS, Raghuramulu Y, Udayar Pillai S. Humic acid as foliar and soil application improve the growth, yield and quality of coffee (cv. C × R) in Western Ghats of India. J Sci Food Agric [Internet]. 2021 Apr 1 [cited 2023 Jun 25];101(6):2273–83. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jsfa.10848 DOI: https://doi.org/10.1002/jsfa.10848

Voltolini GB, Vilela MS, Alecrim A de O, Silva LC da, José Guimarães R, Netto PM, et al. Techniques for sustainable coffee crop management: impacts on growth and yield. https://doi.org/101080/0365034020222157406 [Internet]. 2022 [cited 2023 May 22]; Available from: https://www.informahealthcare.com/doi/abs/10.1080/03650340.2022.2157406

Martins Neto FL, Peralta-Antonio N, de Paula Pimenta M, Rocha SBF, Silva Santos RH. Continuous Application of Compost and Green Manure Improves the Plant Growth and Productivity of Coffee Trees. Commun Soil Sci Plant Anal [Internet]. 2022 [cited 2023 Jun 25];53(8):987–99. Available from: https://www.tandfonline.com/doi/abs/10.1080/00103624.2022.2039174 DOI: https://doi.org/10.1080/00103624.2022.2039174

Somashekhargouda Patil, Jeena Devasia, N. Surya Prakash Rao. Influence of elevation and rainfall on leaf growth, bean characteristics and yield components of arabica and robusta coffee under changing climatic conditions in Karnataka state, India. In: Journal of Plantation Crops, 2022, 50(2) [Internet]. 2022 [cited 2023 May 22]. p. 78–84. Available from: https://updatepublishing.com/journal/index.php/JPC/article/view/7981

Veiga AD, Rocha OC, Guerra AF, Bartholo GF, Rodrigues GC, Pereira W, et al. Agronomic performance and adaptability of arabic coffee resistant to leaf rust in the central brasilian savanna. Coffee Sci [Internet]. 2018 [cited 2023 Jun 25];13(1):41–52. Available from: http://www.sbicafe.ufv.br/handle/123456789/10629 DOI: https://doi.org/10.25186/cs.v13i1.1362

Davis AP, Gargiulo R, Almeida IN das M, Caravela MI, Denison C, Moat J. Hot Coffee: The Identity, Climate Profiles, Agronomy, and Beverage Characteristics of Coffea racemosa and C. zanguebariae. Front Sustain Food Syst. 2021 Oct 21;5:383. DOI: https://doi.org/10.3389/fsufs.2021.740137

Le VH, Truong CT, Le AH, Nguyen BT. A Combination of Shade Trees and Soil Characteristics May Determine Robusta Coffee (Coffea canephora) Yield in a Tropical Monsoon Environment. Agronomy [Internet]. 2023 Jan 1 [cited 2023 May 22];13(1):65. Available from: https://www.mdpi.com/2073-4395/13/1/65/htm DOI: https://doi.org/10.3390/agronomy13010065

Kouadio L, Deo RC, Byrareddy V, Adamowski JF, Mushtaq S, Phuong Nguyen V. Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Comput Electron Agric. 2018 Dec 1;155:324–38. DOI: https://doi.org/10.1016/j.compag.2018.10.014

Custodio AM, de Menezes Silva PE, Santos TR dos, Lourenço LL, Avila RG, da Silva AR, et al. Seasonal Variation in Physiological Traits of Amazonian Coffea canephora Genotypes in Cultivation Systems with Contrasting Water Availability. Agronomy 2022, Vol 12, Page 3197 [Internet]. 2022 Dec 16 [cited 2023 May 27];12(12):3197. Available from: https://www.mdpi.com/2073-4395/12/12/3197/htm DOI: https://doi.org/10.3390/agronomy12123197

Dinh TLA, Aires F, Rahn E. Statistical Analysis of the Weather Impact on Robusta Coffee Yield in Vietnam. Front Environ Sci. 2022 Jun 20;10:880. DOI: https://doi.org/10.3389/fenvs.2022.820916

Received 2023-08-18
Accepted 2023-08-23
Published 2023-06-26