Challenges in Foamed Concrete: exploring alternative and sustainable materials – A Comprehensive Review
Main Article Content
This comprehensive review provides an in-depth exploration of foamed concrete, covering various dimensions of its production, properties, and sustainability considerations. The discus-sion commences with a broad overview of foamed concrete, delving into its typical constituents, including aggregates, water/cement ratio, foam agents, additives, and fibers. The subsequent examination of physic-mechanical properties encompasses critical factors such as compressive strength, flexural strengths, shrinkage, and workability, offering a comprehensive understanding of foamed concrete’s performance metrics.
As sustainability emerges as a pivotal theme, the document navigates through diverse strategies employed in foamed concrete production. It investigates the integration of alternative binders and the replacements of aggregates, presenting a holistic approach towards reducing envi-ronmental impact. The review further dissects sustainable practices within the realm of foamed concrete, including a meticulous exploration of lifecycle assessment and carbon footprint con-siderations, embodied energy aspects, insulation behavior, and the durability of the material. By synthesizing information from various sources, this abstract provides a comprehensive overview of foamed concrete, ensuring a well-rounded understanding of its composition, properties, and sustainability implications.
Liu Q, Tong T, Liu S, Yang D, Yu Q. Investigation of using hybrid recycled powder from demolished concrete solids and clay bricks as a pozzolanic supplement for cement. Constr Build Mater. 2014 Dec 30;73:754–63. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.066
Rudolph C. Valore Jr. Cellular Concretes Part 2 Physical Properties. ACI Journal Proceedings. 1954;50(6). DOI: https://doi.org/10.14359/11795
Amran YHM, Farzadnia N, Ali AAA. Properties and applications of foamed concrete; A review. Vol. 101, Construction and Building Materials. Elsevier Ltd; 2015. p. 990–1005. DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.112
Ramamurthy K, Kunhanandan Nambiar EK, Indu Siva Ranjani G. A classification of studies on properties of foam concrete. Cem Concr Compos. 2009 Jul;31(6):388–96. DOI: https://doi.org/10.1016/j.cemconcomp.2009.04.006
Jones MR, Mccarthy A. Preliminary views on the potential of foamed concrete as a structural material.
American Concrete Institute. CT-23: 2023 ACI Concrete Terminology [Internet]. Available from: www.concrete.org
Compaoré A, Sawadogo M, Sawadogo Y, Ouedraogo M, Sorgho B, Seynou M, et al. Preparation and characterization of foamed concrete using a foaming agent and local mineral resources from Burkina Faso. Results in Materials. 2023 Mar 1;17. DOI: https://doi.org/10.1016/j.rinma.2023.100365
Xiong Y, Hu Z, Jia Z, Liu C, Ma L, Liu Z. Effect of formic acid as an accelerator on foam-stability, compressive strength, and pore size distribution of foam concrete. Journal of Building Engineering. 2023 May 1;66. DOI: https://doi.org/10.1016/j.jobe.2023.105923
Al-Shwaiter A, Awang H. Effect of elevated temperatures on strength and microstructural characteristics of foam concrete containing palm oil fuel ash as sand replacement. Constr Build Mater [Internet]. 2023 May;376:131052. Available from: https://linkinghub.elsevier.com/retrieve/pii/S095006182300764X DOI: https://doi.org/10.1016/j.conbuildmat.2023.131052
Al-Shwaiter A, Awang H, Khalaf MA. Performance of sustainable lightweight foam concrete prepared using palm oil fuel ash as a sand replacement. Constr Build Mater. 2022 Mar 7;322. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126482
Gencel O, Yavuz Bayraktar O, Kaplan G, Arslan O, Nodehi M, Benli A, et al. Lightweight foam concrete containing expanded perlite and glass sand: Physico-mechanical, durability, and insulation properties. Constr Build Mater. 2022 Feb 21;320. DOI: https://doi.org/10.1016/j.conbuildmat.2021.126187
Falliano D, Restuccia L, Vinci A, Ferro GA. Structural foamed concrete: preliminary studies for applications in seismic areas. Procedia Structural Integrity. 2023;44:2350–5. DOI: https://doi.org/10.1016/j.prostr.2023.01.300
Selvakumar M, Srimathi C, Narayanan S, Mukesh B. Study on properties of foam concrete with foundry sand and latex. Mater Today Proc. 2022 Jan 1; DOI: https://doi.org/10.1016/j.matpr.2022.11.462
Xiao J, Hao L, Cao W, Ye T. Influence of recycled powder derived from waste concrete on mechanical and thermal properties of foam concrete. Journal of Building Engineering. 2022 Dec 1;61. DOI: https://doi.org/10.1016/j.jobe.2022.105203
Jiang S, Xu J, Song Y, Xu Y. Alkali-activated fly ash foam concrete with Yellow River silt: Physico-mechanical and structural properties. Constr Build Mater. 2023 Apr 10;373. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130879
Li M, Tan H, He X, Jian S, Li G, Zhang J, et al. Enhancement in compressive strength of foamed concrete by ultra-fine slag. Cem Concr Compos. 2023 Apr 1;138. DOI: https://doi.org/10.1016/j.cemconcomp.2023.104954
Soni A, Patel J, Poojalakshmi ES, Gupta N, Gupta N, Thomas BS, et al. Study for the development of flyash and GGBS-based alkali activated foam concrete. Mater Today Proc [Internet]. 2023 May; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214785323025439 DOI: https://doi.org/10.1016/j.matpr.2023.04.581
Lee HS, Ismail MA, Woo YJ, Min TB, Choi HK. Fundamental study on the development of structural lightweight concrete by using normal coarse aggregate and foaming agent. Materials. 2014;7(6):4536–54. DOI: https://doi.org/10.3390/ma7064536
Rahman A, Torabi F, Shirif E. Surfactant and Nanoparticle Synergy: Towards Improved Foam Stability. Petroleum. 2023 Feb; DOI: https://doi.org/10.1016/j.petlm.2023.02.002
Al-Shwaiter A, Awang H, Khalaf MA. The influence of superplasticiser on mechanical, transport and microstructure properties of foam concrete. Journal of King Saud University - Engineering Sciences. 2021 Feb 1;
Tran NP, Nguyen TN, Ngo TD, Le PK, Le TA. Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review. Vol. 375, Journal of Cleaner Production. Elsevier Ltd; 2022. DOI: https://doi.org/10.1016/j.jclepro.2022.133939
Ma K, Ren F, Huang H, Yang X, Zhang F. Experimental investigation on the dynamic mechanical properties and energy absorption mechanism of foam concrete. Constr Build Mater. 2022 Aug 1;342. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127927
Li C, Zhao H, Wu J, Li X, Zhang Y. Experimental study on the influence of recycled aggregates on the mechanical properties of concrete. In: E3S Web of Conferences. EDP Sciences; 2021. DOI: https://doi.org/10.1051/e3sconf/202128301033
Thakur A, Kumar S. Mechanical properties and development of light weight concrete by using autoclaved aerated concrete (AAC) with aluminum powder. Mater Today Proc. 2022 Jan 1;56:3734–9. DOI: https://doi.org/10.1016/j.matpr.2021.12.508
Majhi RK, Nayak AN. Production of sustainable concrete utilising high-volume blast furnace slag and recycled aggregate with lime activator. J Clean Prod [Internet]. 2020;255:120188. Available from: https://www.sciencedirect.com/science/article/pii/S0959652620302353 DOI: https://doi.org/10.1016/j.jclepro.2020.120188
Elchalakani M, Basarir H, Karrech A. Green Concrete with High-Volume Fly Ash and Slag with Recycled Aggregate and Recycled Water to Build Future Sustainable Cities. Journal of Materials in Civil Engineering [Internet]. 2017;29(2):4016219. Available from: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29MT.1943-5533.0001748 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001748
Gopalakrishnan R, Sounthararajan VM, Mohan A, Tholkapiyan M. The strength and durability of fly ash and quarry dust light weight foam concrete. In: Materials Today: Proceedings. Elsevier Ltd; 2020. p. 1117–24. DOI: https://doi.org/10.1016/j.matpr.2019.11.317
Krishnan G, Anand KB. Industrial waste utilization for foam concrete. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing; 2018. DOI: https://doi.org/10.1088/1757-899X/310/1/012062
Parihara HS, Verma M. Consequences of Recycled Glass Powder Waste as Assets of Flyash and GGBS based Geopolymer Concrete. European Journal of Molecular & Clinical Medicine [Internet]. 2020;7(4):9–14. Available from: https://ejmcm.com/article_1615.html
Aquino Rocha JH, Toledo Filho RD. The utilization of recycled concrete powder as supplementary cementitious material in cement-based materials: A systematic literature review. Vol. 76, Journal of Building Engineering. Elsevier Ltd; 2023. DOI: https://doi.org/10.1016/j.jobe.2023.107319
Azad NM, Samarakoon SMSMK. Utilization of Industrial By-Products/Waste to Manufacture Geopolymer Cement/Concrete. Sustainability. 2021 Jun;13(2):873. DOI: https://doi.org/10.3390/su13020873
Gupta N, Siddique R, Belarbi R. Sustainable and Greener Self-Compacting Concrete incorporating Industrial By-Products: A Review. J Clean Prod. 2021 Jun;284:124803. DOI: https://doi.org/10.1016/j.jclepro.2020.124803
Kiran KI, Kishore IS. An Experimental Study On Partial Replacement of Cement with Bagasse Ash In Concrete Mix. International Journal of Civil Engineering and Technology [Internet]. 2017;8(1):452–5. Available from: http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=8&IType=1http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=8&IType=1
Rivera JF, Orobio A, Cristelo N, Mejía de Gutiérrez R. Fly ash-based geopolymer as A4 type soil stabiliser. Transportation Geotechnics. 2020 Dec 1;25. DOI: https://doi.org/10.1016/j.trgeo.2020.100409
Makul N. Foamed concrete containing industrial wastes. In: Handbook of Sustainable Concrete and Industrial Waste Management [Internet]. Elsevier; 2022. p. 3–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128217306000085 DOI: https://doi.org/10.1016/B978-0-12-821730-6.00008-5
Pan P, Yang W, Zhang Y, Li PP. Optimized strength modelling of foamed concrete using principal component analysis featurized regressors. Structures. 2023 Feb 1;48:1730–45. DOI: https://doi.org/10.1016/j.istruc.2023.01.068
Kim JS, Chung SY, Han TS, Stephan D, Elrahman MA. Correlation between microstructural characteristics from micro-CT of foamed concrete and mechanical behaviors evaluated by experiments and simulations. Cem Concr Compos. 2020 Sep 1;112. DOI: https://doi.org/10.1016/j.cemconcomp.2020.103657
Chica L, Alzate A. Cellular concrete review: New trends for application in construction. Vol. 200, Construction and Building Materials. Elsevier Ltd; 2019. p. 637–47. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.136
Chica LM, Alzate AL. Hardened properties of foamed pastes with alternative foaming agents as function of porosity. Revista Ingenieria de Construccion. 2022;37(2):242–52.
Gaviria-Hdz JF, Medina LJ, Mera C, Chica L, Sepúlveda-Cano LM. Assessment of segmentation methods for pore detection in cellular concrete images. 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings. 2019; DOI: https://doi.org/10.1109/STSIVA.2019.8730220
Zhang S, Cao K, Wang C, Wang X, Deng G, Wei P. Influence of the porosity and pore size on the compressive and splitting strengths of cellular concrete with millimeter-size pores. Constr Build Mater. 2020 Feb 28;235. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117508
Chica L, Mera C, Sepúlveda-Cano LM, Alzate A. Porosity estimation and pore structure characterization of foamed cement paste using non-specialized image digital processing. Materials and Structures/Materiaux et Constructions. 2022;55(7). DOI: https://doi.org/10.1617/s11527-022-02031-6
Falliano D, Parmigiani S, Suarez-Riera D, Ferro GA, Restuccia L. Stability, flexural behavior and compressive strength of ultra-lightweight fiber-reinforced foamed concrete with dry density lower than 100 kg/m3. Journal of Building Engineering. 2022 Jul 1;51. DOI: https://doi.org/10.1016/j.jobe.2022.104329
Darweesh HHM. Geopolymer Cements from Slag, Fly Ash and Silica Fume Activated with Sodium Hydroxide and Water Glass. Interceram - International Ceramic Review. 2017 Jun;66(6):226–31. DOI: https://doi.org/10.1007/BF03401216
Valderrama DMA, Cuaspud JAG, Roether JA, Boccaccini AR. Development and Characterization of Glass-Ceramics from Combinations of Slag, Fly Ash, and Glass Cullet without Adding Nucleating Agents. Materials [Internet]. 2019;12(12). Available from: https://www.mdpi.com/1996-1944/12/12/2032 DOI: https://doi.org/10.3390/ma12122032
Jalull G, Ganjian E, Sadeghi-Pouya H. Using ground granulated blast-furnace slag and mineral wastes to reduce cement in paving block. Proceedings of the Institution of Civil Engineers - Construction Materials. 2014 Jun;167(2):91–103. DOI: https://doi.org/10.1680/coma.13.00011
Muhmood L, Vitta S, Venkateswaran D. Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cem Concr Res [Internet]. 2009;39(2):102–9. Available from: https://www.sciencedirect.com/science/article/pii/S0008884608002093 DOI: https://doi.org/10.1016/j.cemconres.2008.11.002
Rojas-Manzano MA, Otálvaro-Calle IF, Pérez-Caicedo JA, Benavides HM, Ambriz-Fregoso C. Uso de las escorias de horno de arco eléctrico (EHAE) en la construcción – estado del arte. Revista UIS Ingenierías. 2021 Feb 1;20(2). DOI: https://doi.org/10.18273/revuin.v20n2-2021005
González-Ortega MA, Cavalaro SHP, de Sensale GR, Aguado A. Durability of concrete with electric arc furnace slag aggregate. Constr Build Mater [Internet]. 2019;217:543–56. Available from: https://www.sciencedirect.com/science/article/pii/S0950061819312516 DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.082
Velay-Lizancos M, Azenha M, Martínez-Lage I, Vázquez-Burgo P. Addition of biomass ash in concrete: Effects on E-Modulus, electrical conductivity at early ages and their correlation. Constr Build Mater. 2017 Jun;157:1126–32. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.179
Bhosale A, Zade NP, Sarkar P, Davis R. Mechanical and physical properties of cellular lightweight concrete block masonry. Constr Build Mater. 2020 Jul 10;248. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118621
Abdulkareem OM, Ben Fraj A, Bouasker M, Khelidj A. Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC. Constr Build Mater. 2018 Apr 30;169:567–77. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.214
Abed M, Nemes R. Mechanical properties of recycled aggregate self-compacting high strength concrete utilizing waste fly ash, cellular concrete and perlite powders. Periodica Polytechnica Civil Engineering. 2019;63(1):266–77. DOI: https://doi.org/10.3311/PPci.13136
Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, et al. Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod. 2016 Jun;125:253–67. DOI: https://doi.org/10.1016/j.jclepro.2016.03.019
Kumar GS, Deoliya R. Recycled cement and recycled fine aggregates as alternative resources of raw materials for sustainable cellular light weight flowable material. Constr Build Mater [Internet]. 2022;326(February):126878. Available from: https://doi.org/10.1016/j.conbuildmat.2022.126878 DOI: https://doi.org/10.1016/j.conbuildmat.2022.126878
Ibrahim NM, Salehuddin S, Amat RC, Rahim NL, Izhar TNT. Performance of Lightweight Foamed Concrete with Waste Clay Brick as Coarse Aggregate. APCBEE Procedia. 2013;5:497–501. DOI: https://doi.org/10.1016/j.apcbee.2013.05.084
Ibrahim NM, Ismail KN, Salehuddin S, Amat RC, Razak ARA, Odli ZS. Study on Characteristics of Lightweight Aggregate Concrete Made From Foam and Ordinary Portland Cement. 2016; DOI: https://doi.org/10.1051/matecconf/20167801105
Beltrán JM, Chica L. On fresh state behavior of foamed cement pastes and its influence on hardened performance. Constr Build Mater. 2023;368(May 2022):130518. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130518
Shang X, Li J, Zhan B. Properties of sustainable cellular concrete prepared with environment-friendly capsule aggregates. J Clean Prod. 2020 Sep 10;267. DOI: https://doi.org/10.1016/j.jclepro.2020.122018
Satyanarayana GVV, Gayathri P. BEHAVIOURAL STUDIES on TRIPLE BLENDED FOAM CONCRETE. In: E3S Web of Conferences. EDP Sciences; 2020. DOI: https://doi.org/10.1051/e3sconf/202018401104
Zhang T, Yuan J, Pang H, Huang Z, Guo Y, Wei J, et al. UHPC-XPS insulation composite board reinforced by glass fiber mesh: Effect of structural design on the heat transfer, mechanical properties and impact resistance. Journal of Building Engineering [Internet]. 2023;75(March):106935. Available from: https://doi.org/10.1016/j.jobe.2023.106935 DOI: https://doi.org/10.1016/j.jobe.2023.106935
Shi X, Ning B, Wang J, Cui T, Zhong M. Improving flexural toughness of foamed concrete by mixing polyvinyl alcohol-polypropylene fibers: An experimental study. Constr Build Mater [Internet]. 2023;400(August):132689. Available from: https://doi.org/10.1016/j.conbuildmat.2023.132689 DOI: https://doi.org/10.1016/j.conbuildmat.2023.132689
Ma Z, Ma C, Du C, Zhang S, Zhang H, Zhang X, et al. Research on dynamic mechanical properties of polypropylene fiber-modified rubber foamed concrete. Constr Build Mater [Internet]. 2023;404(July):133282. Available from: https://doi.org/10.1016/j.conbuildmat.2023.133282 DOI: https://doi.org/10.1016/j.conbuildmat.2023.133282
Jin Y, Wang X, Huang W, Li X, Ma Q. Mechanical and durability properties of hybrid natural fibre reinforced roadbed foamed concrete. Constr Build Mater [Internet]. 2023;409(November):134008. Available from: https://doi.org/10.1016/j.conbuildmat.2023.134008 DOI: https://doi.org/10.1016/j.conbuildmat.2023.134008
Alzate A, Arteaga A, De Diego A, Cisneros D, Perera R. Refuerzo externo a cortante con láminas de CFRP en elementos de hormigón armado. Materiales de Construccion. 2013;63(310):251–65. DOI: https://doi.org/10.3989/mc.2012.06611
Amran M, Lesovik V, Tolstoy A, Fediuk R, Rusinov R, Rusinova N, et al. Properties and performance of polypropylene fibered high-strength concrete with an improved composite binders. Case Studies in Construction Materials. 2022 Dec 1;17. DOI: https://doi.org/10.1016/j.cscm.2022.e01621
CHANH N Van. Steel fiber reinforced concrete [Internet]. [cited 2023 Jun 15]. Available from: https://www.academia.edu/download/47024331/8-Vietnam_Joint_SeminarCHANH.pdf
Cisneros D, Arteaga Á, De Diego A, Alzate A, Perera R. Experimental study on NSM FRP shear retrofitting of RC beams. Proceedings of the 6th International Conference on FRP Composites in Civil Engineering, CICE 2012. 2012;(January).
Alzate A, Arteaga Á, de Diego A, Perera R. Shear strengthening of reinforced concrete beams using fibre reinforced polymers (frp). European Journal of Environmental and Civil Engineering. 2009;13(9):1051–60. DOI: https://doi.org/10.1080/19648189.2009.9693172
Nilimaa J. Smart materials and technologies for sustainable concrete construction. Developments in the Built Environment. 2023 Oct 1;15. DOI: https://doi.org/10.1016/j.dibe.2023.100177
Zhu X, Lei P. A novel prediction model for failure mechanism of foamed concrete. Constr Build Mater. 2023 Mar 17;370. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130625
Hao Y, Qin L, He X, Su T, Sun H, Wang H. Experimental study on seismic behavior of fabricated lightweight steel solid waste High-strength foam concrete composite wall. Structures. 2023 Jun 1;52:921–32. DOI: https://doi.org/10.1016/j.istruc.2023.04.042
Jittin V, Minnu SN, Bahurudeen A. Potential of sugarcane bagasse ash as supplementary cementitious material and comparison with currently used rice husk ash. Vol. 273, Construction and Building Materials. Elsevier Ltd; 2021. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121679
Nambiar EKK, Ramamurthy K, Asce M. Shrinkage Behavior of Foam Concrete.
Ardhira PJ, Ardra R, Harika M, Sathyan D. Study on fibre reinforced foam concrete-a review. Mater Today Proc. 2023; DOI: https://doi.org/10.1016/j.matpr.2023.03.551
Olofinnade O, Ogara J. Workability, strength, and microstructure of high strength sustainable concrete incorporating recycled clay brick aggregate and calcined clay. Clean Eng Technol. 2021 Jul 1;3. DOI: https://doi.org/10.1016/j.clet.2021.100123
Palcis RJ. A Study on Sustainable Construction Materials: Exploring Alternatives to Traditional Materials. 2023.
Ruiz-Herrero JL, Velasco Nieto D, López-Gil A, Arranz A, Fernández A, Lorenzana A, et al. Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Constr Build Mater. 2016 Feb 1;104:298–310. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.005
Wu H, Zhang X, Liu J. Thermal performance analysis of hollow cellular concrete block air convection embankment for cold regions. Cold Reg Sci Technol. 2023 Feb 1;206. DOI: https://doi.org/10.1016/j.coldregions.2022.103733
Gomez D, Dyke SJ, Maghareh A. Enabling role of hybrid simulation across NEES in advancing earthquake engineering. Smart Struct Syst. 2015 Jun;15(3):913–29. DOI: https://doi.org/10.12989/sss.2015.15.3.913
Losanno D, Ravichandran N, Parisi F, Calabrese A, Serino G. Seismic performance of a Low-Cost base isolation system for unreinforced brick Masonry buildings in developing countries. Soil Dynamics and Earthquake Engineering [Internet]. 2021;141:106501. Available from: https://www.sciencedirect.com/science/article/pii/S0267726120311271 DOI: https://doi.org/10.1016/j.soildyn.2020.106501
Mohammadinia A, Arulrajah A, Sanjayan J, Disfani MM, Bo MW, Darmawan S. Stabilization of Demolition Materials for Pavement Base/Subbase Applications Using Fly Ash and Slag Geopolymers: Laboratory Investigation. Journal of Materials in Civil Engineering. 2016 Jun;28:4016033. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001526
Hendawitharana SU, Nanayakkara SMA. Use of Bottom Ash from Coal Fired Thermal Power Plants in Production of Cellular Lightweight Concrete. In: 2018 Moratuwa Engineering Research Conference (MERCon). 2018. p. 209–14. DOI: https://doi.org/10.1109/MERCon.2018.8421957
Malagón E, Ramos C, Villaquiran caicedo M. La escoria siderúrgica de alto horno como alternativa ecológica en la producción de materiales de construcción : revisión [Internet]. Universidad del Valle; 2023 [cited 2023 Nov 15]. Available from: https://hdl.handle.net/10893/25725
Durastanti C, Moretti L. Environmental Impacts of Cement Production: A Statistical Analysis. Applied Sciences [Internet]. 2020;10(22). Available from: https://www.mdpi.com/2076-3417/10/22/8212 DOI: https://doi.org/10.3390/app10228212
Luukkonen T, Yliniemi J, Kinnunen P, Illikainen M. Sustainable batching water options for one-part alkali-activated slag mortar: Sea water and reverse osmosis reject water. PLoS One. 2020 Jun;15(11):e0242462. DOI: https://doi.org/10.1371/journal.pone.0242462
Angulo-Ramírez DE, de Gutiérrez RM, Puertas F. Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Constr Build Mater [Internet]. 2017;140:119–28. Available from: https://www.sciencedirect.com/science/article/pii/S0950061817302945 DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.092
Paul A, Hussain M. Sustainable Use of GGBS and RHA as a Partial Replacement of Cement in the Stabilization of Indian Peat. International Journal of Geosynthetics and Ground Engineering. 2020 Jun;6(1):4. DOI: https://doi.org/10.1007/s40891-020-0185-7
Guo P, Bao Y, Meng W. Review of using glass in high-performance fiber-reinforced cementitious composites. Cem Concr Compos [Internet]. 2021 Jul;120:104032. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0958946521001013 DOI: https://doi.org/10.1016/j.cemconcomp.2021.104032
Velay-Lizancos M, Perez-Ordoñez JL, Martinez-Lage I, Vazquez-Burgo P. Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature. Constr Build Mater. 2017 Jun;144:195–206. DOI: https://doi.org/10.1016/j.conbuildmat.2017.03.123
Gardner LJ, Walling SA, Corkhill CL, Bernal SA, Lejeune V, Stennett MC, et al. Temperature transformation of blended magnesium potassium phosphate cement binders. Cem Concr Res. 2021 Jun;141. DOI: https://doi.org/10.1016/j.cemconres.2020.106332
Yaphary YL, Lam RHW, Lau D. Reduction in cement content of normal strength concrete with used engine oil (UEO) as chemical admixture. Constr Build Mater. 2020 Jun;261:119967. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119967
Bueno ET, Paris JM, Clavier KA, Spreadbury C, Ferraro CC, Townsend TG. A review of ground waste glass as a supplementary cementitious material: A focus on alkali-silica reaction. J Clean Prod. 2020 Jun;257:120180. DOI: https://doi.org/10.1016/j.jclepro.2020.120180
Song Y, Lange D. Influence of fine inclusions on the morphology and mechanical performance of lightweight foam concrete. Cem Concr Compos. 2021 Nov 1;124. DOI: https://doi.org/10.1016/j.cemconcomp.2021.104264
Yavuz Bayraktar O, Kaplan G, Gencel O, Benli A, Sutcu M. Physico-mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag. Constr Build Mater. 2021 Jun 21;288. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123128
Yang KH, Hwang YH, Lee Y, Mun JH. Feasibility test and evaluation models to develop sustainable insulation concrete using foam and bottom ash aggregates. Constr Build Mater. 2019 Nov 20;225:620–32. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.130
Ibrahim M, Alimi W, Assaggaf R, Salami BA, Oladapo EA. An overview of factors influencing the properties of concrete incorporating construction and demolition wastes. Vol. 367, Construction and Building Materials. Elsevier Ltd; 2023. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130307
Velay-Lizancos M, Martinez-Lage I, Vazquez-Burgo P. The effect of recycled aggregates on the accuracy of the maturity method on vibrated and self-compacting concretes. Archives of Civil and Mechanical Engineering. 2019 Jun;19(2):311–21. DOI: https://doi.org/10.1016/j.acme.2018.11.004
Mohamad Ibrahim N, Ismail KN, Che Amat R, Rahim NL, Nazmi N. Potential use of foam in the production of lightweight aggregate (LWA) and its performance in foamed concrete. In: IOP Conference Series: Earth and Environmental Science. Institute of Physics Publishing; 2020. DOI: https://doi.org/10.1088/1755-1315/476/1/012037
Parshwanath R, Nataraja M, Lakshmanan N, Dattatreya J, Sabitha D. Sulphuric acid resistant ecofriendly concrete from geopolymerisation of blast furnace slag. Indian Journal of Engineering and Materials Sciences. 2012 Jun;19:357–67.
Yang KH, Song JK, Song K Il. Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod [Internet]. 2013;39:265–72. Available from: http://dx.doi.org/10.1016/j.jclepro.2012.08.001 DOI: https://doi.org/10.1016/j.jclepro.2012.08.001
Campo F Pietro, Tua C, Biganzoli L, Pantini S, Grosso M. Natural and enhanced carbonation of lime in its different applications: a review. Environmental Technology Reviews [Internet]. 2021;10(1):224–37. Available from: https://doi.org/10.1080/21622515.2021.1982023 DOI: https://doi.org/10.1080/21622515.2021.1982023
Shah SN, Mo KH, Yap SP, Yang J, Ling TC. Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review. Resour Conserv Recycl [Internet]. 2021;164(April 2020):105103. Available from: https://doi.org/10.1016/j.resconrec.2020.105103 DOI: https://doi.org/10.1016/j.resconrec.2020.105103
Priyatham BPRVS, Lakshmayya MTS, Chaitanya DVSRK. Review on performance and sustainability of foam concrete. Mater Today Proc [Internet]. 2023;(xxxx). Available from: https://doi.org/10.1016/j.matpr.2023.04.080 DOI: https://doi.org/10.1016/j.matpr.2023.04.080
Francesco Colangelo, Raffaele Cioffi IF. Handbook Of Sustainable Concrete And Industrial Waste Management Recycled And Artificial Aggregate, Innovative Eco-Friendly Binders, And Life Cycle Assessment. 2021;(December):147.
Yang S, Wang X, Hu Z, Li J, Yao X, Zhang C, et al. Recent advances in sustainable lightweight foamed concrete incorporating recycled waste and byproducts: A review. Constr Build Mater [Internet]. 2023;403(August):133083. Available from: https://doi.org/10.1016/j.conbuildmat.2023.133083 DOI: https://doi.org/10.1016/j.conbuildmat.2023.133083
Yang KH, Lee KH, Song JK, Gong MH. Properties and sustainability of alkali-activated slag foamed concrete. J Clean Prod [Internet]. 2014;68:226–33. Available from: http://dx.doi.org/10.1016/j.jclepro.2013.12.068 DOI: https://doi.org/10.1016/j.jclepro.2013.12.068
Shehata N, Mohamed OA, Sayed ET, Abdelkareem MA, Olabi AG. Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment [Internet]. 2022;836(March):155577. Available from: https://doi.org/10.1016/j.scitotenv.2022.155577 DOI: https://doi.org/10.1016/j.scitotenv.2022.155577
Proske T, Hainer S, Rezvani M, Graubner CA. Eco-friendly concretes with reduced water and cement contents - Mix design principles and laboratory tests. Cem Concr Res. 2013;51:38–46. DOI: https://doi.org/10.1016/j.cemconres.2013.04.011
Edwards S, Bennett P. Construction products and life-cycle thinking. Industry and environment. 2003;26(2):57–61. DOI: https://doi.org/10.1046/j.1365-3040.2003.00878.x
Arbelaez Perez OF, Florez DR, Zapata Vergara LM, Hernández Benavides KV. Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide emissions. J Clean Prod. 2022 Dec 15;379. DOI: https://doi.org/10.1016/j.jclepro.2022.134822
Dissanayake DMKW, Jayasinghe C, Jayasinghe MTR. A comparative embodied energy analysis of a house with recycled expanded polystyrene (EPS) based foam concrete wall panels. Energy Build [Internet]. 2017;135:85–94. Available from: http://dx.doi.org/10.1016/j.enbuild.2016.11.044 DOI: https://doi.org/10.1016/j.enbuild.2016.11.044
Fawaier M, Bokor B, Horváth M. Wall heat loss recapture evaluation of transpired solar collectors for different climates: A European case study. Case Studies in Thermal Engineering. 2021;24(October 2020). DOI: https://doi.org/10.1016/j.csite.2020.100836
Jihad AS, Tahiri M. Forecasting the heating and cooling load of residential buildings by using a learning algorithm “gradient descent”, Morocco. Case Studies in Thermal Engineering [Internet]. 2018;12(February):85–93. Available from: https://doi.org/10.1016/j.csite.2018.03.006 DOI: https://doi.org/10.1016/j.csite.2018.03.006
Chung SY, Lehmann C, Elrahman MA, Stephan D. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches. Applied Sciences (Switzerland). 2017;7(6). DOI: https://doi.org/10.3390/app7060550
Zhang X, Chen N, Sheng H, Ip C, Yang L, Chen Y, et al. Urban drought challenge to 2030 sustainable development goals. Science of The Total Environment. 2019 Jun;693:133536. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.342
Zhou G, Su RKL. A Review on Durability of Foam Concrete. Buildings. 2023;13(7). DOI: https://doi.org/10.3390/buildings13071880
Moein MM, Saradar A, Rahmati K, Mousavinejad SHG, Bristow J, Aramali V, et al. Predictive models for concrete properties using machine learning and deep learning approaches: A review. Vol. 63, Journal of Building Engineering. Elsevier Ltd; 2023. DOI: https://doi.org/10.1016/j.jobe.2022.105444
Accepted 2023-12-14
Published 2023-09-08
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).