Main Article Content

Authors

Industrial activities that use coal as a source of energy generate considerable quantities of solid waste that affect the natural dynamics of the environment, as well as human health. Between the generated waste is coal bottom ash, which could generate adverse effects on human health, especially respiratory conditions. In this sense, a physical (particle size), chemical, and environmental characterization of bottom ashes generated from the combustion of coal in a Colombian industry. The techniques used for particle size analysis were scanning electron microscopy (SEM), transmission electron microscopy (TEM), and optical microscopy, where particulate matter of environmental interest PM10 y PM2.5 is observed. A chemical analysis was also carried out through the X-ray Fluorescence technique and thermogravimetric analysis to determine the unburned carbon content. Additionally, a bioassay was carried out with Vigna radiata seeds which indicated a reduction in the radicle, being more noticeable in a concentration of 50% to 100% ash. In the ashes studied, particles at the scale of microns and nanometers were found that could generate negative health effects due to inhalation; as well as the content of heavy metals and compounds of concern due to their potential risk to health and the environment.

Lizeth A. Vallejo Vallejo, Facultad de ingeniería y administración, Universidad Nacional de Colombia, Palmira, Colombia.

https://orcid.org/0009-0003-0108-412X

Janneth Torres Agredo, Facultad de ingeniería y administración, Universidad Nacional de Colombia, Palmira, Colombia.

https://orcid.org/0000-0002-4094-8387

Carlos E. Agudelo-Morales, Universidad Nacional de Colombia Sede Palmira, Laboratorio de microscopía e imagen.

https://orcid.org/0000-0002-5889-1550

1.
Vallejo Vallejo LA, Torres Agredo J, Agudelo-Morales CE. Evaluation of particulate matter in coal bottom ash and its possible ecotoxic effects: a preliminary study. inycomp [Internet]. 2024 Feb. 26 [cited 2024 Nov. 22];26(1):e-21713113. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13113

Saikia BK, Saikia J, Rabha S, Silva LFO, Finkelman R. Ambient nanoparticles/nano minerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci Front. 2018;9(3):863–75. DOI: https://doi.org/10.1016/j.gsf.2017.11.013

Gasparotto J, Da Boit Martinello K. Coal as an energy source and its impacts on human health. Energy Geosci. 2021;2(2):113–20. DOI: https://doi.org/10.1016/j.engeos.2020.07.003

Khan MW, Ali Y, De Felice F, Salman A, Petrillo A. Impact of brick kilns industry on the environment and human health in Pakistan. Sci Total Environ [Internet]. 2019;678:383–9. Available from: https://doi.org/10.1016/j.scitotenv.2019.04.369 DOI: https://doi.org/10.1016/j.scitotenv.2019.04.369

Kamal A, Malik RN, Martellini T, Cincinelli A. Cancer risk evaluation of brick kiln workers exposed to dust bound PAHs in Punjab province (Pakistan). Sci Total Environ [Internet]. 2014;493:562–70. Available from: http://dx.doi.org/10.1016/j.scitotenv.2014.05.140 DOI: https://doi.org/10.1016/j.scitotenv.2014.05.140

Munawer ME. Human health and environmental impacts of coal combustion and post-combustion wastes. J Sustain Min [Internet]. 2018;17(2):87–96. Available from: https://doi.org/10.1016/j.jsm.2017.12.007 DOI: https://doi.org/10.1016/j.jsm.2017.12.007

Zierold KM, Sears CG. Community Views About the Health and Exposure of Children Living Near a Coal Ash Storage Site. J Community Health. 2015;40(2):357–63. DOI: https://doi.org/10.1007/s10900-014-9943-6

Hendryx M, Zullig KJ, Luo J. Impacts of coal use on health. Annu Rev Public Health. 2019;41:397–415. DOI: https://doi.org/10.1146/annurev-publhealth-040119-094104

Dou X, Ren F, Nguyen MQ, Ahamed A, Yin K, Chan WP, et al. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment, and existing application. Renew Sustain Energy Rev [Internet]. 2017;79(May 2016):24–38. Available from: http://dx.doi.org/10.1016/j.rser.2017.05.044 DOI: https://doi.org/10.1016/j.rser.2017.05.044

Rajarathnam U, Athalye V, Ragavan S, Maithel S, Lalchandani D, Kumar S, et al. Assessment of air pollutant emissions from brick kilns. Atmos Environ [Internet]. 2014;98:549–53. Available from: http://dx.doi.org/10.1016/j.atmosenv.2014.08.075 DOI: https://doi.org/10.1016/j.atmosenv.2014.08.075

Petroleum B. Statistical Review of World Energy globally consistent data on world energy markets, and authoritative publications in the field of energy. BP Energy Outlook 2021. 2021;70:8–20.

Mtisi M, Gwenzi W. Evaluation of the phytotoxicity of coal ash on lettuce (Lactuca sativa L.) germination, growth and metal uptake. Ecotoxicol Environ Saf [Internet]. 2019;170(June 2018):750–62. Available from: https://doi.org/10.1016/j.ecoenv.2018.12.047 DOI: https://doi.org/10.1016/j.ecoenv.2018.12.047

Dai S, Bechtel A, Eble CF, Flores RM, French D, Graham IT, et al. Recognition of peat depositional environments in coal: A review. Int J Coal Geol [Internet]. 2020;219(January):103383. Available from: https://doi.org/10.1016/j.coal.2019.103383 DOI: https://doi.org/10.1016/j.coal.2019.103383

Ruwei W, Jiamei Z, Jingjing L, Liu G. Levels and patterns of polycyclic aromatic hydrocarbons in coal-fired power plant bottom ash and Fly ash from Huainan, China. Arch Environ Contam Toxicol. 2013;65(2):193–202. DOI: https://doi.org/10.1007/s00244-013-9902-8

Wild SR, Mitchell DJ, Yelland CM, Jones KC. Arrested municipal solid waste incinerator fly ash as a source of polynuclear aromatic hydrocarbons (PAHs) to the environment. Waste Manag Res. 1992;10(1):99–111. DOI: https://doi.org/10.1016/0734-242X(92)90061-O

Bai H, Ma Y, Ai X, Li H, Liu P, Cang D. Chemical and morphological properties of particulate matter generated from coal-fired circulating fluidized bed boiler. Proc - 3rd Int Conf Meas Technol Mechatronics Autom ICMTMA 2011. 2011;1:708–11. DOI: https://doi.org/10.1109/ICMTMA.2011.179

Besari DAA, Anggara F, Rosita W, Petrus HTBM. Characterization and mode of occurrence of rare earth elements and yttrium in fly and bottom ash from coal-fired power plants in Java, Indonesia. Int J Coal Sci Technol [Internet]. 2022;9(1). Available from: https://doi.org/10.1007/s40789-022-00476-2 DOI: https://doi.org/10.1007/s40789-022-00476-2

Jayaranjan MLD, van Hullebusch ED, Annachhatre AP. Reuse options for coal-fired power plant bottom ash and fly ash. Rev Environ Sci Biotechnol. 2014;13(4):467–86. DOI: https://doi.org/10.1007/s11157-014-9336-4

Gallardo S, Van Hullebusch ED, Pangayao D, Salido BM, Ronquillo R. Chemical, Leaching, and Toxicity Characteristics of Coal Ashes from Circulating Fluidized Bed of a Philippine Coal-Fired Power Plant. Water Air Soil Pollut. 2015;226(9). DOI: https://doi.org/10.1007/s11270-015-2367-9

Silva LFO, Da Boit KM. Nanominerals and nanoparticles in feed coal and bottom ash: Implications for human health effects. Environ Monit Assess. 2011;174(1–4):187–97. DOI: https://doi.org/10.1007/s10661-010-1449-9

Gieré R, Blackford M, Smith K. TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station. Environ Sci Technol. 2006;40(20):6235–40. DOI: https://doi.org/10.1021/es060423m

Ribé V, Nehrenheim E, Odlare M. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Waste Manag. 2014;34(10):1871–6. DOI: https://doi.org/10.1016/j.wasman.2013.12.024

Jain N. Open Access Research Article Seeds of Vigna radiata as a Model to Study the Ecotoxicity Potential of Abstract : 2 . Materials and Methods : 2015;4(1):1–6.

Oliveira MLS, Da Boit K, Schneider IL, Teixeira EC, Crissien Borrero TJ, Silva LFO. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. J Clean Prod. 2018;188:662–9. DOI: https://doi.org/10.1016/j.jclepro.2018.04.050

Faria T, Cunha-Lopes I, Pilou M, Housiadas C, Querol X, Alves C, et al. Children’s exposure to size-fractioned particulate matter: Chemical composition and internal dose. Sci Total Environ [Internet]. 2022;823:153745. Available from: https://doi.org/10.1016/j.scitotenv.2022.153745 DOI: https://doi.org/10.1016/j.scitotenv.2022.153745

World Health Organization. WHO global air quality guidelines. Coast Estuar Process. 2021;1–360.

Kalaw ME, Culaba A, Hinode H, Kurniawan W, Gallardo S, Promentilla MA. Optimizing and characterizing geopolymers from a ternary blend of Philippine coal fly ash, coal bottom ash, and rice hull ash. Materials (Basel). 2016;9(7). DOI: https://doi.org/10.3390/ma9070580

Fidanchevski E, Angjusheva B, Jovanov V, Murtanovski P, Vladiceska L, Stamatovska N, et al. Technical and radiological characterization of fly ash and bottom ash from thermal power plant. J Radioanal Nucl Chem [Internet]. 2021;330(3):685–94. Available from: https://doi.org/10.1007/s10967-021-07980-w DOI: https://doi.org/10.1007/s10967-021-07980-w

Rafieizonooz M, Khankhaje E, Rezania S. Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete. J Build Eng [Internet]. 2022;49(November 2021):104040. Available from: https://doi.org/10.1016/j.jobe.2022.104040 DOI: https://doi.org/10.1016/j.jobe.2022.104040

Goswami L, Raul P, Sahariah B, Bhattacharyya P, Bhattacharya SS. Characterization and risk evaluation of tea industry coal ash for environmental suitability. Clean - Soil, Air, Water. 2014;42(10):1470–6. DOI: https://doi.org/10.1002/clen.201300670

Hussain M, Tufa LD, Yusup S, Zabiri H. Characterization of coal bottom ash &its potential to be used as a catalyst in biomass gasification. Mater Today Proc. 2019;16:1886–93. DOI: https://doi.org/10.1016/j.matpr.2019.06.065

Tiwari M, Sahu SK, Bhangare RC, Ajmal PY, Pandit GG. Elemental characterization of coal, fly ash, and bottom ash using an energy-dispersive X-ray fluorescence technique. Appl Radiat Isot [Internet]. 2014;90:53–7. Available from: http://dx.doi.org/10.1016/j.apradiso.2014.03.002 DOI: https://doi.org/10.1016/j.apradiso.2014.03.002

Baite E, Messan A, Hannawi K, Tsobnang F, Prince W. Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Constr Build Mater [Internet]. 2016;125:919–26. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2016.08.117 DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.117

Srikanth S, Raju GJN. Quantitative Study of Trace Elements in Coal and Coal Related Ashes using PIXE. J Geol Soc India. 2019;94(5):533–7. DOI: https://doi.org/10.1007/s12594-019-1351-1

Mondal A, Das S, Sah RK, Bhattacharyya P, Bhattacharya SS. Environmental footprints of brick kiln bottom ashes: Geostatistical approach for assessment of metal toxicity. Sci Total Environ [Internet]. 2017;609:215–24. Available from: http://dx.doi.org/10.1016/j.scitotenv.2017.07.172 DOI: https://doi.org/10.1016/j.scitotenv.2017.07.172

Itam Z, Beddu S, Mohammad D, Kamal NLM, Zainoodin MM, Syamsir A, et al. Extraction of metal oxides from coal bottom ash by carbon reduction and chemical leaching. Mater Today Proc [Internet]. 2019;17:727–35. Available from: https://doi.org/10.1016/j.matpr.2019.06.356 DOI: https://doi.org/10.1016/j.matpr.2019.06.356

Silva LFO, Hower JC, Dotto GL, Oliveira MLS, Pinto D. Titanium nanoparticles in sedimented dust aggregates from urban children’s parks around coal ashes wastes. Fuel [Internet]. 2021;285(July 2020):119162. Available from: https://doi.org/10.1016/j.fuel.2020.119162 DOI: https://doi.org/10.1016/j.fuel.2020.119162

Abedin MJ, Karim MR, Khandaker MU, Kamal M, Hossain S, Miah MHA, et al. Dispersion of radionuclides from coal-fired brick kilns and concomitant impact on human health and the environment. Radiat Phys Chem [Internet]. 2020;177(July):109165. Available from: https://doi.org/10.1016/j.radphyschem.2020.109165 DOI: https://doi.org/10.1016/j.radphyschem.2020.109165

Sun W, Bai L, Ji H, Huo W, Huang Z, Liu K, et al. Environmental risk assessment of coal-ash-amended soil based on continuous planting of pakchoi. Am J Biochem Biotechnol. 2021;17(2):192–204. DOI: https://doi.org/10.3844/ajbbsp.2021.192.204

Wright RJ, Codling EE, Stuczynski T, Siddaramappa R. Influence of soil-applied coal combustion by-products on growth and elemental composition of annual ryegrass. Environ Geochem Health. 1998;20(1):10–8. DOI: https://doi.org/10.1023/A:1006571026303

Received 2023-08-04
Accepted 2024-03-05
Published 2024-02-26