Contenido principal del artículo

Autores

Las actividades industriales que utilizan carbón como fuente de energía, generan cantidades considerables de residuos sólidos que afectan la dinámica natural del ambiente, así como a la salud humana. Entre los residuos generados se encuentran las cenizas de fondo de carbón, las cuales podrían generar efectos adversos en la salud humana, especialmente por afecciones respiratorias. En este sentido se presenta una caracterización física (tamaño de partícula), química y ambiental, de cenizas de fondo generadas a partir de la combustión del carbón en una industria colombiana. Las técnicas empleadas para el análisis de tamaño de partícula fueron microscopía electrónica de barrido (SEM), microscopía electrónica de transmisión (TEM) y microscopía óptica, donde se observa material particulado de interés ambiental PM10 y PM2.5. También se realizó un análisis químico a través de la técnica de Fluorescencia de Rayos X y un análisis termogravimétrico con el fin de determinar el contenido de carbón inquemado. Adicionalmente, se realizó un bioensayo con semillas de Vigna radiata el cual indicó una reducción de la radícula, siendo más notoria en concentración de 50 % al 100% de ceniza. En las cenizas estudiadas, se encontraron partículas a escala de micras y nanómetros que podrían generar efectos negativos en la salud por su inhalación; así como contenido de metales pesados y compuestos de cuidado por su potencial riesgo a la salud y al ambiente.

Janneth Torres Agredo, Universidad Nacional de Colombia, Palmira, Valle, Colombia

https://orcid.org/0000-0002-4094-8387

Carlos E. Agudelo-Morales, Universidad Nacional de Colombia. Palmira, Valle, Colombia

https://orcid.org/0000-0002-5889-1550

Lizeth A. Vallejo Vallejo, Universidad Nacional de Colombia

https://orcid.org/0009-0003-0108-412X

1.
Torres Agredo J, Agudelo-Morales CE, Vallejo Vallejo LA. Evaluación de material particulado en cenizas de fondo de carbón y sus posibles efectos ecotóxicos: estudio preliminar . inycomp [Internet]. 1 de abril de 2024 [citado 30 de abril de 2024];26(1):e-21713113. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13113

Saikia BK, Saikia J, Rabha S, Silva LFO, Finkelman R. Ambient nanoparticles/nano minerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci Front. 2018;9(3):863–75. DOI: https://doi.org/10.1016/j.gsf.2017.11.013

Gasparotto J, Da Boit Martinello K. Coal as an energy source and its impacts on human health. Energy Geosci. 2021;2(2):113–20. DOI: https://doi.org/10.1016/j.engeos.2020.07.003

Khan MW, Ali Y, De Felice F, Salman A, Petrillo A. Impact of brick kilns industry on the environment and human health in Pakistan. Sci Total Environ [Internet]. 2019;678:383–9. Available from: https://doi.org/10.1016/j.scitotenv.2019.04.369 DOI: https://doi.org/10.1016/j.scitotenv.2019.04.369

Kamal A, Malik RN, Martellini T, Cincinelli A. Cancer risk evaluation of brick kiln workers exposed to dust bound PAHs in Punjab province (Pakistan). Sci Total Environ [Internet]. 2014;493:562–70. Available from: http://dx.doi.org/10.1016/j.scitotenv.2014.05.140 DOI: https://doi.org/10.1016/j.scitotenv.2014.05.140

Munawer ME. Human health and environmental impacts of coal combustion and post-combustion wastes. J Sustain Min [Internet]. 2018;17(2):87–96. Available from: https://doi.org/10.1016/j.jsm.2017.12.007 DOI: https://doi.org/10.1016/j.jsm.2017.12.007

Zierold KM, Sears CG. Community Views About the Health and Exposure of Children Living Near a Coal Ash Storage Site. J Community Health. 2015;40(2):357–63. DOI: https://doi.org/10.1007/s10900-014-9943-6

Hendryx M, Zullig KJ, Luo J. Impacts of coal use on health. Annu Rev Public Health. 2019;41:397–415. DOI: https://doi.org/10.1146/annurev-publhealth-040119-094104

Dou X, Ren F, Nguyen MQ, Ahamed A, Yin K, Chan WP, et al. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment, and existing application. Renew Sustain Energy Rev [Internet]. 2017;79(May 2016):24–38. Available from: http://dx.doi.org/10.1016/j.rser.2017.05.044 DOI: https://doi.org/10.1016/j.rser.2017.05.044

Rajarathnam U, Athalye V, Ragavan S, Maithel S, Lalchandani D, Kumar S, et al. Assessment of air pollutant emissions from brick kilns. Atmos Environ [Internet]. 2014;98:549–53. Available from: http://dx.doi.org/10.1016/j.atmosenv.2014.08.075 DOI: https://doi.org/10.1016/j.atmosenv.2014.08.075

Petroleum B. Statistical Review of World Energy globally consistent data on world energy markets, and authoritative publications in the field of energy. BP Energy Outlook 2021. 2021;70:8–20.

Mtisi M, Gwenzi W. Evaluation of the phytotoxicity of coal ash on lettuce (Lactuca sativa L.) germination, growth and metal uptake. Ecotoxicol Environ Saf [Internet]. 2019;170(June 2018):750–62. Available from: https://doi.org/10.1016/j.ecoenv.2018.12.047 DOI: https://doi.org/10.1016/j.ecoenv.2018.12.047

Dai S, Bechtel A, Eble CF, Flores RM, French D, Graham IT, et al. Recognition of peat depositional environments in coal: A review. Int J Coal Geol [Internet]. 2020;219(January):103383. Available from: https://doi.org/10.1016/j.coal.2019.103383 DOI: https://doi.org/10.1016/j.coal.2019.103383

Ruwei W, Jiamei Z, Jingjing L, Liu G. Levels and patterns of polycyclic aromatic hydrocarbons in coal-fired power plant bottom ash and Fly ash from Huainan, China. Arch Environ Contam Toxicol. 2013;65(2):193–202. DOI: https://doi.org/10.1007/s00244-013-9902-8

Wild SR, Mitchell DJ, Yelland CM, Jones KC. Arrested municipal solid waste incinerator fly ash as a source of polynuclear aromatic hydrocarbons (PAHs) to the environment. Waste Manag Res. 1992;10(1):99–111. DOI: https://doi.org/10.1016/0734-242X(92)90061-O

Bai H, Ma Y, Ai X, Li H, Liu P, Cang D. Chemical and morphological properties of particulate matter generated from coal-fired circulating fluidized bed boiler. Proc - 3rd Int Conf Meas Technol Mechatronics Autom ICMTMA 2011. 2011;1:708–11. DOI: https://doi.org/10.1109/ICMTMA.2011.179

Besari DAA, Anggara F, Rosita W, Petrus HTBM. Characterization and mode of occurrence of rare earth elements and yttrium in fly and bottom ash from coal-fired power plants in Java, Indonesia. Int J Coal Sci Technol [Internet]. 2022;9(1). Available from: https://doi.org/10.1007/s40789-022-00476-2 DOI: https://doi.org/10.1007/s40789-022-00476-2

Jayaranjan MLD, van Hullebusch ED, Annachhatre AP. Reuse options for coal-fired power plant bottom ash and fly ash. Rev Environ Sci Biotechnol. 2014;13(4):467–86. DOI: https://doi.org/10.1007/s11157-014-9336-4

Gallardo S, Van Hullebusch ED, Pangayao D, Salido BM, Ronquillo R. Chemical, Leaching, and Toxicity Characteristics of Coal Ashes from Circulating Fluidized Bed of a Philippine Coal-Fired Power Plant. Water Air Soil Pollut. 2015;226(9). DOI: https://doi.org/10.1007/s11270-015-2367-9

Silva LFO, Da Boit KM. Nanominerals and nanoparticles in feed coal and bottom ash: Implications for human health effects. Environ Monit Assess. 2011;174(1–4):187–97. DOI: https://doi.org/10.1007/s10661-010-1449-9

Gieré R, Blackford M, Smith K. TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station. Environ Sci Technol. 2006;40(20):6235–40. DOI: https://doi.org/10.1021/es060423m

Ribé V, Nehrenheim E, Odlare M. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Waste Manag. 2014;34(10):1871–6. DOI: https://doi.org/10.1016/j.wasman.2013.12.024

Jain N. Open Access Research Article Seeds of Vigna radiata as a Model to Study the Ecotoxicity Potential of Abstract : 2 . Materials and Methods : 2015;4(1):1–6.

Oliveira MLS, Da Boit K, Schneider IL, Teixeira EC, Crissien Borrero TJ, Silva LFO. Study of coal cleaning rejects by FIB and sample preparation for HR-TEM: Mineral surface chemistry and nanoparticle-aggregation control for health studies. J Clean Prod. 2018;188:662–9. DOI: https://doi.org/10.1016/j.jclepro.2018.04.050

Faria T, Cunha-Lopes I, Pilou M, Housiadas C, Querol X, Alves C, et al. Children’s exposure to size-fractioned particulate matter: Chemical composition and internal dose. Sci Total Environ [Internet]. 2022;823:153745. Available from: https://doi.org/10.1016/j.scitotenv.2022.153745 DOI: https://doi.org/10.1016/j.scitotenv.2022.153745

World Health Organization. WHO global air quality guidelines. Coast Estuar Process. 2021;1–360.

Kalaw ME, Culaba A, Hinode H, Kurniawan W, Gallardo S, Promentilla MA. Optimizing and characterizing geopolymers from a ternary blend of Philippine coal fly ash, coal bottom ash, and rice hull ash. Materials (Basel). 2016;9(7). DOI: https://doi.org/10.3390/ma9070580

Fidanchevski E, Angjusheva B, Jovanov V, Murtanovski P, Vladiceska L, Stamatovska N, et al. Technical and radiological characterization of fly ash and bottom ash from thermal power plant. J Radioanal Nucl Chem [Internet]. 2021;330(3):685–94. Available from: https://doi.org/10.1007/s10967-021-07980-w DOI: https://doi.org/10.1007/s10967-021-07980-w

Rafieizonooz M, Khankhaje E, Rezania S. Assessment of environmental and chemical properties of coal ashes including fly ash and bottom ash, and coal ash concrete. J Build Eng [Internet]. 2022;49(November 2021):104040. Available from: https://doi.org/10.1016/j.jobe.2022.104040 DOI: https://doi.org/10.1016/j.jobe.2022.104040

Goswami L, Raul P, Sahariah B, Bhattacharyya P, Bhattacharya SS. Characterization and risk evaluation of tea industry coal ash for environmental suitability. Clean - Soil, Air, Water. 2014;42(10):1470–6. DOI: https://doi.org/10.1002/clen.201300670

Hussain M, Tufa LD, Yusup S, Zabiri H. Characterization of coal bottom ash &its potential to be used as a catalyst in biomass gasification. Mater Today Proc. 2019;16:1886–93. DOI: https://doi.org/10.1016/j.matpr.2019.06.065

Tiwari M, Sahu SK, Bhangare RC, Ajmal PY, Pandit GG. Elemental characterization of coal, fly ash, and bottom ash using an energy-dispersive X-ray fluorescence technique. Appl Radiat Isot [Internet]. 2014;90:53–7. Available from: http://dx.doi.org/10.1016/j.apradiso.2014.03.002 DOI: https://doi.org/10.1016/j.apradiso.2014.03.002

Baite E, Messan A, Hannawi K, Tsobnang F, Prince W. Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre (Niger). Constr Build Mater [Internet]. 2016;125:919–26. Available from: http://dx.doi.org/10.1016/j.conbuildmat.2016.08.117 DOI: https://doi.org/10.1016/j.conbuildmat.2016.08.117

Srikanth S, Raju GJN. Quantitative Study of Trace Elements in Coal and Coal Related Ashes using PIXE. J Geol Soc India. 2019;94(5):533–7. DOI: https://doi.org/10.1007/s12594-019-1351-1

Mondal A, Das S, Sah RK, Bhattacharyya P, Bhattacharya SS. Environmental footprints of brick kiln bottom ashes: Geostatistical approach for assessment of metal toxicity. Sci Total Environ [Internet]. 2017;609:215–24. Available from: http://dx.doi.org/10.1016/j.scitotenv.2017.07.172 DOI: https://doi.org/10.1016/j.scitotenv.2017.07.172

Itam Z, Beddu S, Mohammad D, Kamal NLM, Zainoodin MM, Syamsir A, et al. Extraction of metal oxides from coal bottom ash by carbon reduction and chemical leaching. Mater Today Proc [Internet]. 2019;17:727–35. Available from: https://doi.org/10.1016/j.matpr.2019.06.356 DOI: https://doi.org/10.1016/j.matpr.2019.06.356

Silva LFO, Hower JC, Dotto GL, Oliveira MLS, Pinto D. Titanium nanoparticles in sedimented dust aggregates from urban children’s parks around coal ashes wastes. Fuel [Internet]. 2021;285(July 2020):119162. Available from: https://doi.org/10.1016/j.fuel.2020.119162 DOI: https://doi.org/10.1016/j.fuel.2020.119162

Abedin MJ, Karim MR, Khandaker MU, Kamal M, Hossain S, Miah MHA, et al. Dispersion of radionuclides from coal-fired brick kilns and concomitant impact on human health and the environment. Radiat Phys Chem [Internet]. 2020;177(July):109165. Available from: https://doi.org/10.1016/j.radphyschem.2020.109165 DOI: https://doi.org/10.1016/j.radphyschem.2020.109165

Sun W, Bai L, Ji H, Huo W, Huang Z, Liu K, et al. Environmental risk assessment of coal-ash-amended soil based on continuous planting of pakchoi. Am J Biochem Biotechnol. 2021;17(2):192–204. DOI: https://doi.org/10.3844/ajbbsp.2021.192.204

Wright RJ, Codling EE, Stuczynski T, Siddaramappa R. Influence of soil-applied coal combustion by-products on growth and elemental composition of annual ryegrass. Environ Geochem Health. 1998;20(1):10–8. DOI: https://doi.org/10.1023/A:1006571026303

Recibido 2023-08-04
Aceptado 2024-03-05
Publicado 2024-04-01