Vitrification process to solidify/stabilize a smelting slag: preliminary study
Main Article Content
The aim of this study is to carry out a preliminary evaluation of vitrification process, which used as a method to stabilize a secondary lead smelting slag, in order to facilitate its handling or disposal. Vitrification consists of processing a waste at high temperatures with vitrifying agents, to obtain a product chemically stabilized, to inertize a hazardous waste. In this study, slag and a sand residue were characterized, through of X-ray Fluorescence (FRX), X-ray Diffraction (DRX) and Laser granulometry, in order to determine vitrification process parameters. Experimental batches were formulated for the vitrification process with slag, sand and sodium carbonate (Na2CO3), and were processed to 1000, 1100 and 1200 °C for 2 hours. Additionally, the TCLP (Toxicity Characteristic Leaching Procedure) technique was applied in order to determine the mobility of heavy metals contained in slag and vitrified products. As a result, it was found the vitrified at 1200ºC presented more homogeneous textures, partially amorphous, although some products presented crystalline phases. It can be concluded that the vitrification process was effective for the stabilization of the slag, because it presented a significant reduction in heavy metal leaching, complying with the standard. Further research is suggested to modify temperatures and vitrifying agents.
(1) Krishnan S, Zulkapli NS, Kamyab H, Taib SM, Din MFBM, Majid ZA, et al. Current technologies for recovery of metals from industrial wastes: An overview. Environ technol innov. 2021;22(101525):101525.
(2) Smaniotto A, Antunes A, Filho I do N, Venquiaruto LD, de Oliveira D, Mossi A, et al. Qualitative lead extraction from recycled lead-acid batteries slag. J Hazard Mater. 2009;172(2–3):1677–80.
(3) International Lead Association Lead Uses – Statistics. 2012. Disponible en: https://www.ila-lead.org/lead-facts/leaduses--statistics. [Consultado: 02-abr2019].
(4) Pan D, Li L, Tian X, Wu Y, Cheng N, Yu H. A review on lead slag generation, characteristics, and utilization. Resour Conserv Recycl. 2019;146:140–55.
(5) European Waste Catalogue (EWC). 2000. Disponible en: http://www.epa.ie
(6) Rotaru A, Raileanu P. Groundwater contamination from waste storage works. Environmental Engineering and Management Journal. 2008;7(6):731-735.
(7) Pan D, Li L, Wu Y, Liu T, Yu H. Characteristics and properties of glassceramics using lead fuming slag. J Clean Prod. 2018;175:251–6.
(8) Chen, C., Xie, W., Li, X., Yang, Q., Zhong, Z., Chen, X., et al. Solidification/Stabilization of Pb and Zn in tailing waste using cement, fly ash and quick lime. Environ Chem. 2015, 34: 1553-1560.
(9) Gougar, M. L. D., Scheetz, B. E., Roy, D. M. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review. Waste Manag. 1996, 16(4): 295- 303.
(10) Elías Castells X. Reciclaje de residuos industriales. Editorial Díaz de Santos, S.A.; 2012.
(11) Iwaszko J, Zajemska M, Zawada A, Szwaja S, Poskart A. Vitrification of environmentally harmful by-products from biomass torrefaction process. J Clean Prod. 2020;249(119427):119427. https://doi.org/10.1016/j.jclepro.2019.119 427
(12) Pelino M, Karamanov A, Pisciella P, Crisucci S, Zonetti D. Vitrification of electric arc furnace dusts. Waste Manag. 2002;22(8):945–9. https://doi.org/10.1016/S0956- 053X(02)00080-6
(13) Colombo P, Brusatin G, Bernardo E, Scarinci G. Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr Opin Solid State Mater Sci. 2003;7(3):225–39.
(14) Zhao ZW, Chai LY, Peng B, Liang YJ, He Y, Yan ZH. Arsenic vitrification by copper slag based glass: Mechanism and stability studies. J Non Cryst Solids. 2017;466–467:21–8.
(15) Fan W-D, Liu B, Luo X, Yang J, Guo B, Zhang S-G. Production of glass–ceramics using Municipal solid waste incineration fly ash. Rare Metals. 2019;38(3):245–51.
(16) Ayala Valderrama DM, Gómez Cuaspud JA, Roether JA, Boccaccini AR. Development and characterization of glass-ceramics from combinations of slag, fly ash, and glass cullet without adding nucleating agents. Materials (Basel). 2019;12(12):2032.
(17) Pinakidou F, Katsikini M, Paloura EC. Immobilization of Pb in vitrified and devitrified industrial wastes: Evaluationof structural stability using XAFS spectroscopies. J Non Cryst Solids. 2021;563(120804):120804.
(18) Barbieri L, Lancellotti I, Manfredini T, Queralt I, Rincon J, Romero M. Design, obtainment and properties of glasses and glass–ceramics from coal fly ash. Fuel (Lond). 1999;78(2):271–6.
(19) Binhussain MA, Marangoni M, Bernardo E, Colombo P. Sintered and glazed glassceramics from natural and waste raw materials. Ceram Int. 2014;40(2):3543– 51.
(20) Ministerio de Ambiente Vivienda y Desarrollo Territorial. Decreto 4741, Por el cual se reglamenta parcialmente la prevención y manejo de los residuos o desechos peligrosos generados en el marco de la gestión integral (2005).Colombia.
(21) Gomes, V., De Borba, C. D. G., Riella, H. G. Production and characterization of glass ceramics from steelwork slag. J of Materials Science. 2002, 37(12): 2581- 2585.
(22) Inertisation of slags from the treatment of end of life automotive batteries and their reuse in the production of heavy clay products with soundproofing properties. Glass Technology-European Journal of Glass Science and Technology Part A. 2008. 49(6): 313-316.
(23) Khater GA. The use of Saudi slag for the production of glass-ceramic materials. Ceram Int. 2002;28(1):59–67.
(24) Pelino M. Recycling of zinchydrometallurgy wastes in glass and glass ceramic materials. Waste Manag. 2000;20(7):561–8.
(25) Yu L, Xiao H, Cheng Y. Influence of magnesia on the structure and properties of MgO-Al2O3-SiO2-F− glass-ceramics. Ceram Int. 2008;34(1):63–8.
(26) ElBatal, H. A., Hassaan, M. Y., Fanny, M. A., Ibrahim, M. M. Optical and FT Infrared Absorption Spectra of Soda Lime Silicate Glasses Containing nano Fe2O3 and Effects of Gamma Irradiation. Silicon. 2017. 9(4): 511-517.
(27) Kavouras, P., Kaimakamis, G., Ioannidis, T. A., Kehagias, T., Komninou, P., Kokkou, et al. Vitrification of lead-rich solid ashes from incineration of hazardous industrial wastes. Waste Manag. 2003;23(4): 361-371.
(28) Coruh S, Ergun ON. Leaching characteristics of copper flotation waste before and after vitrification. J Environ Manage. 2006;81(4):333–8. https://doi.org/10.1016/j.jenvman.2005.1 1.006
(29) Abadi, M. S., Delbari, A., Fakoor, Z., Baedi, J. Effects of annealing temperature on infrared spectra of SiO2 extracted from rice husk. J Ceram Sci Technol. 2015;6(1): 41-46.
(30) Yilmaz, G. Structural characterization of glass–ceramics made from fly ash containing SiO2 – Al2O3 – Fe2O3 – CaO and analysis by FT-IR–XRD–SEM methods. Journal of Molecular Structure. 2012; 1019: 37-42.
(31) Conde, C. S. La espectroscopía Infrarroja en el campo del vidrio. Boletín de la Sociedad Española de Cerámica y Vidrio. 1968. 7(6): 633-653.
(32) Dantas, N. O., Ayta, W. E., Silva, A. C., Cano, N. F., Silva, S. W., Morais, P. C. Effect of Fe2O3 concentration on the structure of the SiO2–Na2O–Al2O3–B2O3 glass system. Spectrochim Acta A: Mol Biomol Spectrosc. 2011;81(1): 140-143.
(33) Ministerio de Ambiente y Desarrollo Sostenible, Decreto 4741 de 2005, Por el cual se reglamenta parcialmente la prevención y manejo de los residuos o desechos peligrosos generados en el marco de la gestión integral. Colombia, 2005.
(34) Park YJ, Heo J. Conversion to glassceramics from glasses made by MSW incinerator fly ash for recycling. Ceram Int. 2002;28(6):689–94.
(35) Sørensen MA, Koch CB, StackpooleMM, Bordia RK, Benjamin MM, Christensen TH. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues. Environ Sci Technol. 2000;34(21):4620–7.
(36) Karmakar, B. Functional Glasses and Glass-Ceramics from Solid Waste Materias. Functional Glasses and GlassCeramic; Butterworth-Heinemann: Oxford, 2017. UK, p. 295-315.
(37) Saenz Forero, F. A. Estudio preliminardel proceso de vitrificación de residuos peligrosos por vía térmica [tesis de Maestría en Internet]. Bogotá: Universidad de los Andes; 2006. Disponible en: https://repositorio.uniandes.edu.co/bitstre am/handle/1992/9304/u276944.pdf?seque nce=1
(38) Forero Cardenas, B. Vitrificación de los contenidos internos de pilas desechadasdel tipo li-ion: una opción de reciclaje. [tesis de Maestría en Internet]. Universidad Industrial de Santander; 2016. Disponible en: http://tangara.uis.edu.co/biblioweb/tesis/2 016/165533.pdf
- Silvia R. Izquierdo, Ruby Mejía de Gutiérrez, Janneth Torres Agredo, Study of mortars added with fluid catalytic cracking catalyst residue (FCC) under the influence of high temperatures , Ingeniería y Competitividad: Vol. 16 No. 2 (2014)
- Lizeth A. Vallejo Vallejo, Janneth Torres Agredo, Carlos E. Agudelo-Morales, Evaluation of particulate matter in coal bottom ash and its possible ecotoxic effects: a preliminary study , Ingeniería y Competitividad: Vol. 26 No. 1 (2024): Ingeniería y Competitividad
Accepted 2021-08-26
Published 2022-05-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).