Real-time scale monitoring prototype of aircraft systems through wireless communication
Main Article Content
Currently, there are aircraft tracking systems known as ACARS (Aircraft Communication Addressing And Reporting System), which are already able to provide certain information, however, this can only be used in very specific contexts, since information such as passengers or fuel used do not serve much to the maintenance area if you want to provide real-time support. Therefore, this research proposed the development of a prototype capable of real-time monitoring some of the systems of an aircraft and thus deliver the necessary information for good maintenance, monitoring, and support in real-time. For this case, the monitoring was performed on an RPAS (Remotely Piloted Aircraft System), since its acquisition or construction is more affordable; the flight prototype shed light on the behavior when acquiring and sending data frames inside the aircraft.
Caballero G, Marinelli J. Plataforma web para sistema distribuido de telemetría de un avión no tripulado. Cordoba: Instituto Universitario Aeronáutico; 2015. Available from: https://www.researchgate.net/publication/332730468_Plataforma_web_para_sistema_distribuido_de_telemetria_de_un_avion_no_tripulado
Buitrago Zuluaga HM, Raigosa Figueroa MA. Estudio de factibilidad para la creación de una empresa que presta el servicio de sistema de localización y monitoreo de pequeñas y medianas aeronaves. Pereira: Universidad Católica de Pereira; 2016. Available from: https://repositorio.ucp.edu.co/bitstream/10785/4153/1/DDMIST14.pdf
Hernández Carmona GA, López Monjaras CI. Evolución del Sistema ACARS y nueva tecnología en comunicación aire / tierra en la aviación. CD. MX. Ticoman: Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica; 2012. Available from: https://tesis.ipn.mx/xmlui/handle/123456789/12038
De Moraes RS, De Freitas EP. Multi-UAV based crowd monitoring system. IEEE Transactions on Aerospace and Electronic Systems. 2019;56(2):1332-1345. doi: https://doi.org/10.1109/TAES.2019.2952420 DOI: https://doi.org/10.1109/TAES.2019.2952420
Isik OK, Hong J, Petrunin I, Tsourdos A. Integrity analysis for GPS-based navigation of UAVs in urban environment. Robotics. 2020;9(3):66. https://doi.org/10.1109/ACCESS.2018.2854712 DOI: https://doi.org/10.3390/robotics9030066
Kwak J, Sung Y. Autonomous UAV flight control for GPS-based navigation. IEEE Access. 2018;6:37947-37955. https://doi.org/10.1109/ACCESS.2018.2854712 DOI: https://doi.org/10.1109/ACCESS.2018.2854712
Ferrer V. Que es SIGFOX [Internet]. [cited 2021 May 3]. Available from: https://vicentferrer.com/sigfox/
Ferrer V. Qué es Lora y Lorawan [Internet]. [cited 2021 May 3]. Available from: https://vicentferrer.com/lora-lorawan/
Sherstjuk V, Zharikova M, Sokol I. Forest fire-fighting monitoring system based on UAV team and remote sensing. In: 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO); April 2018; 663-668. IEEE. https://doi.org/10.1109/ELNANO.2018.8477527 DOI: https://doi.org/10.1109/ELNANO.2018.8477527
Nasution T, Siregar I, Yasir M. UAV telemetry communications using ZigBee protocol. Journal of Physics: Conference Series. 2017. https://doi.org/10.1088/1742-6596/914/1/012001 DOI: https://doi.org/10.1088/1742-6596/914/1/012001
Teja CB, Sharma H. Enhancement of UAV Performance Through Xbee Based Telemetry System Design. In: International Conference on Communication and Electronics Systems (ICCES); 2019. https://doi.org/10.1109/icces45898.2019.9002179 DOI: https://doi.org/10.1109/ICCES45898.2019.9002179
García J, Molina JM, Trincado J. Real evaluation for designing sensor fusion in UAV platforms. Information Fusion. 2020;63:136-152. https://doi.org/10.1016/j.inffus.2020.06.003 DOI: https://doi.org/10.1016/j.inffus.2020.06.003
Jumaah HJ, Kalantar B, Halin AA, Mansor S, Ueda N, Jumaah SJ. Development of UAV-based PM2.5 monitoring system. Drones. 2021;5(3):60. https://doi.org/10.3390/drones5030060 DOI: https://doi.org/10.3390/drones5030060
Arduino. Arduino Nano | Arduino Official Store [Internet]. Arduino Nano. [cited 2021 May 3]. Available from: https://store.arduino.cc/arduino-nano
List of Unclassified Manufacturers. MPU-6050 Datasheet [Internet]. [cited 2021 May 3]. Available from: https://www.alldatasheet.com/datasheet-pdf/pdf/517744/ETC1/MPU-6050.html
U-blox AG. NEO-6M Datasheet [Internet]. [cited 2021 May 3]. Available from: https://www.alldatasheet.com/datasheet-pdf/pdf/1283987/U-BLOX/NEO-6M.html
Bosch Sensortec GmbH. BMP280 Datasheet [Internet]. [cited 2021 May 3]. Available from: https://www.alldatasheet.com/datasheet-pdf/pdf/1132069/BOSCH/BMP280.html
DIGI. Xbee.cl [Internet]. [cited 2021 May 3]. Available from: https://xbee.cl/que-es-xbee/
Fundacion Raspberry Pi. Raspberrypi.org [Internet]. [cited 2021 May 3]. Available from: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
Fetick RJ. MPU 650_light library documentation [Internet]. 2021 Jan. [cited 2021 May 3]. Available from: https://github.com/rfetick/MPU6050_light/blob/master/documentation_MPU6050_light.pdf
Accepted 2023-09-12
Published 2023-06-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).