Contenido principal del artículo

Autores

Con el fin de aprovechar las propiedades antisépticas y cicatrizantes de la miel, en muchos lugares del mundo se ha investigado la preparación de micro y nanofibras poliméricas con miel proveniente de las abejas, para potencializar su utilización en el desarrollo de productos biomédicos como apósitos, vendas y otros elementos que favorecen el cierre y cicatrización de heridas y la restauración de tejidos del ser humano. Para aportar información y una puesta al día sobre conceptos y desarrollos útiles en esta línea de investigación que está en constante evolución. También, se presenta una revisión descriptiva de antecedentes sobre la aplicación de la técnica de electrohilado en la preparación de membranas de micro y nanofibras con miel, centrándose en la metodología experimental como: polímeros utilizados, solventes, agentes terapéuticos, principios activos o fármacos cargados en las fibras apiterapéuticas. Se recopilan técnicas y parámetros de electrohilado, ensayos y métodos de caracterización del material, presentando el efecto de estas variables en las propiedades de composición, morfológicas, mecánicas y fisicoquímicas de las mallas fibrosas. Además, se hizo un compendio de los ensayos biológicos evaluados in vitro e in vivo, analizando la funcionalidad y potencial de aplicación de las fibras de miel en ingeniería de tejidos, en la construcción de dispositivos para el diagnóstico clínico y en general para el desarrollo de materiales avanzados para el tratamiento de heridas. Se presentan los fundamentos metodológicos para el diseño de nuevos materiales a base de miel y extractos de plantas aún no explorados, que son utilizados para el desarrollo de materiales compuestos de alto interés científico e industrial.

Andres Felipe Rubiano-Navarrete, Universidad Pedagógica y Tecnológica de Colombia. Tunja, Boyacá, Colombia.

https://orcid.org/0000-0001-9959-0124

Rakell Alejandra Rosas Cuesta, Universidad Pedagógica y Tecnológica de Colombia. Tunja, Boyacá, Colombia.

https://orcid.org/0000-0002-1774-0502

Yolanda Torres Perez, Universidad Pedagógica y Tecnológica de Colombia. Tunja, Boyacá, Colombia.

https://orcid.org/0000-0002-3526-8491

Edwin Yesid Gómez Pachón, Universidad Pedagógica y Tecnológica de Colombia. Tunja, Boyacá, Colombia.

https://orcid.org/0000-0002-2733-5252

1.
Rubiano-Navarrete AF, Rosas Cuesta RA, Torres Perez Y, Gómez Pachón EY. De las fibras electrohiladas con miel a la curación de heridas: una revisión. inycomp [Internet]. 14 de mayo de 2024 [citado 2 de julio de 2024];26(2):e-30112811. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12811

Naeimi A, Payandeh M, Ghara AR, Ghadi FE. In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr Polym. 2020 Jul 15;240:116315.

Khan MQ, Lee H, Khatri Z, Kharaghani D, Khatri M, Ishikawa T, et al. Fabrication and characterization of nanofibers of honey/poly(1,4-cyclohexane dimethylene isosorbide trephthalate) by electrospinning. Materials Science and Engineering: C. 2017 Dec 1;81:247–51.

dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol. 2024 Jan 1;254:127641. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127641

Adhikari J, Ghosh M, Das P, Basak P, Saha P. Polycaprolactone assisted electrospinning of honey/betel with chitosan for tissue engineering. Mater Today Proc. 2022 Jan 1;57:307–15. DOI: https://doi.org/10.1016/j.matpr.2022.03.096

Doodmani SM, Bagheri A, Natouri O, Nobakht A, Saghebasl S. Electrospinning-netting of spider-inspired polycaprolactone/collagen nanofiber-nets incorporated with Propolis extract for enhanced wound healing applications. Int J Biol Macromol [Internet]. 2024 May 1 [cited 2024 Apr 17];267:131452. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813024022578 DOI: https://doi.org/10.1016/j.ijbiomac.2024.131452

Ullah A, Ullah S, Khan MQ, Hashmi M, Nam PD, Kato Y, et al. Manuka honey incorporated cellulose acetate nanofibrous mats: Fabrication and in vitro evaluation as a potential wound dressing. Int J Biol Macromol [Internet]. 2020 Jul 15 [cited 2024 Apr 10];155:479–89. Available from: https://pubmed.ncbi.nlm.nih.gov/32240741/

Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol. 2023 Apr 15;234:123696. DOI: https://doi.org/10.1016/j.ijbiomac.2023.123696

Tajfiroozeh F, Moradi A, Shahidi F, Movaffagh J, Kamali H, Roshanak S, et al. Fabrication and characterization of gallic-acid/nisin loaded electrospun core/shell chitosan/polyethylene oxide nanofiberous membranes with free radical scavenging capacity and antimicrobial activity for food packing applications. Food Biosci. 2023 Jun 1;53:102529. DOI: https://doi.org/10.1016/j.fbio.2023.102529

Arslan A, Şimşek M, Aldemir SD, Kazaroǧlu NM, Gumuşderelioǧlu M. Honey-based PET or PET/chitosan fibrous wound dressings: effect of honey on electrospinning process. J Biomater Sci Polym Ed [Internet]. 2014 Jul 3 [cited 2024 Apr 10];25(10):999–1012. Available from: https://pubmed.ncbi.nlm.nih.gov/24842308/

Balaji A, Jaganathan SK, Ismail AF, Rajasekar R. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries. Int J Nanomedicine [Internet]. 2016 Sep 2 [cited 2024 Apr 17];11:4339. Available from: /pmc/articles/PMC5015880/

Hu MS, Maan ZN, Wu JC, Rennert RC, Hong WX, Lai TS, et al. Tissue Engineering and Regenerative Repair in Wound Healing. Ann Biomed Eng [Internet]. 2014 [cited 2024 Apr 17];42(7):1494. Available from: /pmc/articles/PMC4144830/ DOI: https://doi.org/10.1007/s10439-014-1010-z

Cimini A, Imperi E, Picano A, Rossi M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. Appl Mater Today. 2023 Jun 1;32:101833.

Maciej Serda, Becker FG, Cleary M, Team RM, Holtermann H, The D, et al. Hybrid electrospun PHBV/Aloe vera and PHBV/Honey nanofibers are scaffolds for rat dorsal root ganglion neurite outgrowth and guidance as well as for the regeneration of mouse skin after wounding. G. Balint, Antala B, Carty C, Mabieme JMA, Amar IB, Kaplanova A, editors. Glia [ISSN 0894-1491], v 67 (sup S1), p E654-E655, Abstract T16-004B, (Julio 2019) [Internet]. 2019 [cited 2024 Apr 17];7(1):343–54. Available from: https://accedacris.ulpgc.es/jspui/handle/10553/73488

Maleki H, Gharehaghaji AA, Dijkstra PJ. A novel honey-based nanofibrous scaffold for wound dressing application. J Appl Polym Sci [Internet]. 2013 Mar 5 [cited 2024 Apr 10];127(5):4086–92. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/app.37601

Mancuso E, Tonda-Turo C, Ceresa C, Pensabene V, Connell SD, Fracchia L, et al. Potential of Manuka Honey as a Natural Polyelectrolyte to Develop Biomimetic Nanostructured Meshes With Antimicrobial Properties. Front Bioeng Biotechnol. 2019 Dec 4;7:482248.

Minden-Birkenmaier BA, Smith RA, Radic MZ, van der Merwe M, Bowlin GL. Manuka Honey Reduces NETosis on an Electrospun Template Within a Therapeutic Window. Polymers (Basel) [Internet]. 2020 Jun 1 [cited 2024 Apr 10];12(6). Available from: /pmc/articles/PMC7362002/

Yao F, Zheng Y, Gao Y, Du Y, Chen F. Electrospinning of peanut protein isolate/poly-L-lactic acid nanofibers containing tetracycline hydrochloride for wound healing. Ind Crops Prod. 2023 Apr 1;194:116262. DOI: https://doi.org/10.1016/j.indcrop.2023.116262

Cimini A, Imperi E, Picano A, Rossi M. Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. Appl Mater Today. 2023 Jun 1;32:101833. DOI: https://doi.org/10.1016/j.apmt.2023.101833

Parin FN, Terzioğlu P, Sicak Y, Yildirim K, Öztürk M. Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties. Journal of the Textile Institute [Internet]. 2021 [cited 2024 Apr 10];112(4):628–35. Available from: https://www.researchgate.net/publication/341943374_Pine_honey-loaded_electrospun_poly_vinyl_alcoholgelatin_nanofibers_with_antioxidant_properties

Kadakia PU, Growney Kalaf EA, Dunn AJ, Shornick LP, Sell SA. Comparison of silk fibroin electrospun scaffolds with poloxamer and honey additives for burn wound applications. https://doi.org/101177/0883911517710664 [Internet]. 2017 May 28 [cited 2024 Apr 10];33(1):79–94. Available from: https://journals.sagepub.com/doi/abs/10.1177/0883911517710664

Paimard G, Shahlaei M, Moradipour P, Karamali V, Arkan E. Impedimetric aptamer based determination of the tumor marker MUC1 by using electrospun core-shell nanofibers. Mikrochim Acta [Internet]. 2019 Jan 1 [cited 2024 Apr 10];187(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31797120/

Paimard G, Shahlaei M, Moradipour P, Akbari H, Jafari M, Arkan E. An Impedimetric Immunosensor modified with electrospun core-shell nanofibers for determination of the carcinoma embryonic antigen. Sensors and Actuators B-chemical. 2020 May 15;311.

Hong R, Sun H, Li D, Yang W, Fan K, Liu C, et al. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Life (Basel) [Internet]. 2022 Mar 1 [cited 2024 Apr 17];12(3). Available from: https://pubmed.ncbi.nlm.nih.gov/35330093/ DOI: https://doi.org/10.3390/life12030342

Kilic NM, Gelen SS, Er Zeybekler S, Odaci D. Carbon-Based Nanomaterials Decorated Electrospun Nanofibers in Biosensors: A Review. ACS Omega [Internet]. 2023 Jan 9 [cited 2024 Apr 17];9(1):3–15. Available from: https://pubmed.ncbi.nlm.nih.gov/38222586/ DOI: https://doi.org/10.1021/acsomega.3c00798

Wang P, He JH. Electrospun Polyvinyl Alcohol-Honey Nanofibers THERMAL SCIENCE. 2013;17(5):1549–50.

Manotham S, Khieokae M, Butnoi P. Electrospun biopolymer polyvinyl alcohol/Centella asiatica extract nanofibers for antibacterial activity. Mater Today Proc. 2023 Jun 23; DOI: https://doi.org/10.1016/j.matpr.2023.06.166

Nian Q, Yang H, Meng E, Wan X, Zhang Q, Wang C, et al. Polyvinyl alcohol electrospun nanofiber membrane based solid-phase extraction for monitoring administered aminoglycoside antibiotics in various animal-derived foods. Food Chem. 2023 Dec 1;428:136771. DOI: https://doi.org/10.1016/j.foodchem.2023.136771

Sarkar R, Ghosh A, Barui A, Datta P. Repositing honey incorporated electrospun nanofiber membranes to provide anti-oxidant, anti-bacterial and anti-inflammatory microenvironment for wound regeneration. J Mater Sci Mater Med [Internet]. 2018 Mar 1 [cited 2024 Apr 10];29(3). Available from: https://pubmed.ncbi.nlm.nih.gov/29536274/

Jaldin-Crespo L, Silva N, Martínez J. Nanomaterials Based on Honey and Propolis for Wound Healing-A Mini-Review. Nanomaterials (Basel) [Internet]. 2022 Dec 1 [cited 2024 Apr 17];12(24). Available from: https://pubmed.ncbi.nlm.nih.gov/36558262/ DOI: https://doi.org/10.3390/nano12244409

Li A, Li L, Zhao B, Li X, Liang W, Lang M, et al. Antibacterial, antioxidant and anti-inflammatory PLCL/gelatin nanofiber membranes to promote wound healing. Int J Biol Macromol [Internet]. 2022 Jan 1 [cited 2024 Apr 17];194:914–23. Available from: https://pubmed.ncbi.nlm.nih.gov/34838860/ DOI: https://doi.org/10.1016/j.ijbiomac.2021.11.146

Spizzirri UG, Aiello F, Carullo G, Facente A, Restuccia D. Nanotechnologies: An innovative tool to release natural extracts with antimicrobial properties. Pharmaceutics [Internet]. 2021 Feb 1 [cited 2024 Apr 17];13(2):1–32. Available from: https://www.researchgate.net/publication/349215369_Nanotechnologies_An_Innovative_Tool_to_Release_Natural_Extracts_with_Antimicrobial_Properties DOI: https://doi.org/10.3390/pharmaceutics13020230

Tang Y, Lan X, Liang C, Zhong Z, Xie R, Zhou Y, et al. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr Polym [Internet]. 2019 Sep 1 [cited 2024 Apr 17];219:113–20. Available from: https://pubmed.ncbi.nlm.nih.gov/31151507/

Zekry SSA, Abdellatif A, Azzazy HME. Fabrication of pomegranate /honey nanofibers for use as antibacterial wound dressings. J Tissue Sci Eng [Internet]. [cited 2024 Apr 10]; Available from: https://www.hilarispublisher.com/proceedings/fabrication-of-pomegranate-honey-nanofibers-for-use-as-antibacterial-wound-dressings-21764.html

Sarhan WA, Azzazy HME, El-Sherbiny IM. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity. ACS Appl Mater Interfaces [Internet]. 2016 Mar 16 [cited 2024 Apr 10];8(10):6379–90. Available from: https://pubmed.ncbi.nlm.nih.gov/26909753/

Naeimi A, Payandeh M, Ghara AR, Ghadi FE. In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr Polym. 2020;240:116315.

Arslan A, Simşek M, Dalkıranoğlu S, Kazaroglu N, Gümüşderelioğlu M. Honey-based PET or PET/chitosan fibrous wound dressings: Effect of honey on electrospinning process. J Biomater Sci Polym Ed. 2014 May;25:1–14. DOI: https://doi.org/10.1080/09205063.2014.918455

Balaji A, Jaganathan SK, Ismail AF, Rajasekar R. Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries. Int J Nanomedicine. 2016;11:4339–55. DOI: https://doi.org/10.2147/IJN.S112265

Khan MQ, Lee H, Khatri Z, Kharaghani D, Khatri M, Ishikawa T, et al. Fabrication and characterization of nanofibers of honey/poly(1,4-cyclohexane dimethylene isosorbide trephthalate) by electrospinning. Materials Science and Engineering: C. 2017;81:247–51. DOI: https://doi.org/10.1016/j.msec.2017.08.011

Burke L.D., ElderI., Wright C.J. Electrospinning for wound healing and tissue engineering. Wound Repair and Regeneration. 2014;22(5):A75.

Romero-Alemán M.-D.-M., Hernández-Rodríguez J.-E., Pérez-GalvánJ.-M., Monzón-Mayor M. Hybrid electrospun PHBV/Aloe vera and PHBV/Honey nanofibers are scaffolds for rat dorsal root ganglion neurite outgrowth and guidance as well as for the regeneration of mouse skin after wounding. Glia. 2019;67:E654–5.

Maleki H, Gharehaghaji AA, Dijkstra PJ. A novel honey-based nanofibrous scaffold for wound dressing application. J Appl Polym Sci. 2013 Mar;127(5):4086–92. DOI: https://doi.org/10.1002/app.37601

Mancuso E, Tonda-Turo C, Ceresa C, Pensabene V, Connell SD, Fracchia L, et al. Potential of Manuka Honey as a Natural Polyelectrolyte to Develop Biomimetic Nanostructured Meshes With Antimicrobial Properties. Front Bioeng Biotechnol. 2019;7:344. DOI: https://doi.org/10.3389/fbioe.2019.00344

Minden-Birkenmaier BA, Smith RA, Radic MZ, van der Merwe M, Bowlin GL. Manuka Honey Reduces NETosis on an Electrospun Template Within a Therapeutic Window. Polymers (Basel). 2020 Jun;12(6):1430. DOI: https://doi.org/10.3390/polym12061430

Parin FN, Terzioğlu P, Sicak Y, Yildirim K, Öztürk M. Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties. The Journal of The Textile Institute. 2020 Jun;1–8. DOI: https://doi.org/10.1080/00405000.2020.1773199

P.U. K, KalafE.A. G, Dunn AJ, Shornick L.P., Sell S.A. Comparison of silk fibroin electrospun scaffolds with poloxamer and honey additives for burn wound applications. J Bioact Compat Polym. 2018;33(1):79–94. DOI: https://doi.org/10.1177/0883911517710664

Paimard G, Shahlaei M, Moradipour P, Karamali V, Arkan E, G. P, et al. Impedimetric aptamer based determination of the tumor marker MUC1 by using electrospun core-shell nanofibers. Mikrochim Acta. 2019 Dec;187(1):5. DOI: https://doi.org/10.1007/s00604-019-3955-y

Paimard G, Shahlaei M, Moradipour P, Akbari H, Jafari M, Arkan E. An Impedimetric Immunosensor modified with electrospun core-shell nanofibers for determination of the carcinoma embryonic antigen. Sens Actuators B Chem. 2020;311:127928. DOI: https://doi.org/10.1016/j.snb.2020.127928

Ping W, He JH. Electrospun polyvinyl alcohol-honey nanofibers. Thermal Science. 2013 Jan;17. DOI: https://doi.org/10.2298/TSCI1305549W

Sarkar R, Ghosh A, Barui A, Datta P. Repositing honey incorporated electrospun nanofiber membranes to provide anti-oxidant, anti-bacterial and anti-inflammatory microenvironment for wound regeneration. J Mater Sci Mater Med. 2018 Mar;29(3):31. DOI: https://doi.org/10.1007/s10856-018-6038-4

Abou Zekry SS, Abdellatif A, Azzazy HME, S.S. AZ, A. A, H.M.E. A, et al. Fabrication of pomegranate/honey nanofibers for use as antibacterial wound dressings. Wound Medicine. 2020;28:100181. DOI: https://doi.org/10.1016/j.wndm.2020.100181

Sarhan WA, Azzazy HME, El-Sherbiny IM, W.A. S, H.M. A, I.M. ES. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity. ACS Appl Mater Interfaces. 2016 Mar;8(10):6379–90. DOI: https://doi.org/10.1021/acsami.6b00739

Tang Y, Lan X, Liang C, Zhong Z, Xie R, Zhou Y, et al. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr Polym. 2019;219:113–20.

Sarhan WA, Azzazy HM. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine. 2017 Sep;12(17):2055–67.

Greiner A, Hehl J. Microbicidal nano- and meso-polymer fibers produced from polymers and honey, for textile applications. WO/2008/049251, 2008.

Monzón Mayor M, Romero Alemán MDM. Hybrid aloe vera nanofibers. Nacional: ES 2579161 A2 Internacional: WO2017153619A1, 2017. p. 40.

Balázs VL, Nagy-Radványi L, Bencsik-Kerekes E, Koloh R, Szabó D, Kocsis B, et al. Antibacterial and Antibiofilm Effect of Unifloral Honeys against Bacteria Isolated from Chronic Wound Infections. Microorganisms 2023, Vol 11, Page 509 [Internet]. 2023 Feb 17 [cited 2024 Apr 17];11(2):509. Available from: https://www.mdpi.com/2076-2607/11/2/509/htm DOI: https://doi.org/10.3390/microorganisms11020509

Ullah A, Ullah S, Khan MQ, Hashmi M, Nam PD, Kato Y, et al. Manuka honey incorporated cellulose acetate nanofibrous mats: Fabrication and in vitro evaluation as a potential wound dressing. Int J Biol Macromol. 2020;155:479–89. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.237

Maciej Serda, Becker FG, Cleary M, Team RM, Holtermann H, The D, et al. Hybrid Aloe Vera Nanofibres. G. Balint, Antala B, Carty C, Mabieme JMA, Amar IB, Kaplanova A, editors. Uniwersytet śląski [Internet]. 2023 [cited 2024 Apr 10];7(1):343–54. Available from: https://accedacris.ulpgc.es/jspui/handle/10553/127687

Hybrid electrospun PHBV/Aloe vera and PHBV/Honey nanofibers are scaffolds for rat dorsal root ganglion neurite outgrowth and guidance as well as for the regeneration of mouse skin after wounding. | accedaCRIS [Internet]. [cited 2024 Apr 10]. Available from: https://accedacris.ulpgc.es/handle/10553/73488

Tang Y, Lan X, Liang C, Zhong Z, Xie R, Zhou Y, et al. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr Polym [Internet]. 2019 Sep 1 [cited 2024 Apr 10];219:113–20. Available from: https://pubmed.ncbi.nlm.nih.gov/31151507/ DOI: https://doi.org/10.1016/j.carbpol.2019.05.004

Sarhan WA, Azzazy HM. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine (Lond) [Internet]. 2017 Sep 1 [cited 2024 Apr 10];12(17):2055–67. Available from: https://pubmed.ncbi.nlm.nih.gov/28805554/ DOI: https://doi.org/10.2217/nnm-2017-0151

Lee CK, Kim SJ, Kim SI, Yi BJ, Han SY. Diseño e implementación de un sistema de control automático para un equipo experimental de electrohilado por centrifugado de nanofibras poliméricas. Smart Mater Struct [Internet]. 2016 Apr 1 [cited 2024 Apr 10];15(2):607–11. Available from: https://repositorio.uptc.edu.co//handle/001/2696

Scopus - Document details - Antibacterial and Antibiofilm Effect of Unifloral Honeys against Bacteria Isolated from Chronic Wound Infections [Internet]. [cited 2023 Nov 23]. Available from: https://www-scopus-com.biblio.uptc.edu.co/record/display.uri?eid=2-s2.0-85149033750&origin=resultslist&sort=plf-f&src=s&sid=e93cfc6b89393b848dcd1e97f3491d56&sot=b&sdt=b&s=TITLE-ABS-KEY%28concentrations+D+membranes%29&sl=67&sessionSearchId=e93cfc6b89393b848dcd1e97f3491d56

Khan MQ, Kharaghani D, Sanaullah, Shahzad A, Saito Y, Yamamoto T, et al. Fabrication of antibacterial electrospun cellulose acetate/ silver-sulfadiazine nanofibers composites for wound dressings applications. Polym Test. 2019 Apr 1;74:39–44. DOI: https://doi.org/10.1016/j.polymertesting.2018.12.015

Fatma Nur P, Glu Pınar T, U˘ Gur P, Yes¸ilyurt Y, Ays¸enur A, Glu Murat E, et al. Fabrication of polyamide 6/honey/boric acid mats by electrohydrodynamic processes for wound healing applications. Mater Today Commun. 2021;29:2352–4928. DOI: https://doi.org/10.1016/j.mtcomm.2021.102921

Naeimi A, Payandeh M, Ghara AR, Ghadi FE. In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis. 2020; DOI: https://doi.org/10.1016/j.carbpol.2020.116315

Recibido 2023-02-15
Aceptado 2024-05-17
Publicado 2024-05-14