Contenido principal del artículo

Autores

La formabilidad es una propiedad importante en láminas metálicas sometidas a procesos de estirado y embutido. Una manera de medirla es a través de las curvas límite de formabilidad (CLF), que permiten determinar los límites de resistencia del material en este tipo de operaciones. En este trabajo se presenta la construcción de curvas límite de formabilidad para 3 chapas de acero inoxidable AISI 304, con espesores de 0.9, 1.2 y 1.5 milímetros, utilizadas en el sector metalmecánico colombiano. Para ello, se realizaron ensayos simulativos bajo lo establecido en la norma ASTM E2218, mediante un dispositivo de embutido acoplado a una máquina universal. Se realizaron las curvas en los rangos de deformación verdadera ε1 (entre 0 y 0,8) y ε 2 (entre -0,4 y 0,3). Los puntos más bajos de cada curva que marcan la condición de deformación plana (FLD0) fueron: Para 0.9 mm (0,01 de ε_2 y 0,45 de ε_1), para 1.2 mm (0,01 de ε_2 y 0,38 de ε_1) y para 1.5 mm (0,02 de ε_2 y 0,40 de ε_1). La curva para el espesor de 0.9 mm mostró mejor comportamiento que las de 1.5 y 1.2 mm respectivamente, y coincide con los mayores resultados obtenidos por la misma chapa en propiedades intrínsecas como el alargamiento total εt, el exponente de endurecimiento por deformación n y el valor de la anisotropía planar Δr.

Jhon E. Barbosa , Universidad Nacional Abierta y a Distancia, Cúcuta, Colombia

https://orcid.org/0000-0001-7890-2678

Ismael H. García , Universidad Francisco de Paula Santander, Cúcuta, Colombia

https://orcid.org/0000-0002-2590-5661

Victoriano García, Universidad Nacional Abierta y a Distancia, Cúcuta, Colombia

https://orcid.org/0000-0003-0698-6395

1.
Barbosa JE, García IH, García V. Curvas límite de conformado en láminas de acero inoxidable AISI 304 utilizadas por el sector metalmecánico. inycomp [Internet]. 11 de octubre de 2023 [citado 10 de mayo de 2024];25(3):e-21612702. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12702

(1) Barbosa J, García I, Fuentes J. Estimación vía experimental de la formabilidad de láminas de aluminio de pureza comercial. Revista Latinoamericana de Metalurgia y Materiales. [Internet] 2009 [cited 2022 Apr 25]; 29(2): 128-134. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0255-69522009000200008&lng=es&tlng=es.

(2) Casadiego L, Barbosa J, García I. Determinación experimental de la formabilidad de láminas de acero SG295 mediante sus propiedades tensiles. Revista Colombiana de Tecnologías de Avanzada. [Internet] 2017 [cited 2022 Apr 25]; 1(29): 9-15. Available from: https://doi.org/10.24054/16927257.v29.n29.2017.183 DOI: https://doi.org/10.24054/16927257.v29.n29.2017.2480

(3) Askeland D.R, Wright W.J. Ciencia e ingeniería de los materiales. 7a ed. México, D.F: Cengage learning, 2017.

(4) Gedney R. Sheet Metal Testing Guide. ADMET, Inc. [Internet] 2013 [cited 2022 Apr 25]; 1(1):1-9. Available from: http://admet.com/assets/ADMET-Sheet-Metal-Testing-Guide-July-2013.pdf

(5) ASTM E8, Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken: ASTM International; 2021.

(6) ASTM E517, Standard Test Method for Plastic Strain Ratio r for Sheet Metal. West Conshohocken: ASTM International; 2018.

(7) ASTM E646, Standard Test Method for Tensile Strain-Hardening Exponents (n -Values) of Metallic Sheet Materials. West Conshohocken: ASTM International; 2016.

(8) Andersson R. Deformation characteristics of stainless steels [Internet] [PhD dissertation]. [Luleå]: Luleå tekniska universitet; 2005. [cited 2022 Apr 25]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17912

(9) ASM International. Metals handbook volume 14 forming and forging. USA: ASM International, 1996.

(10) Kalpakjian S, Schmid S. Manufactura, Ingeniería y tecnología. 5a ed. México, D.F: Pearson Educación, 2008.

(11) Schey J.A. Introduction to manufacturing processes. 3a ed. United states of america: McGraw-Hill, 2000.

(12) Tekkaya A.E, Altan T. Sheet Metal Forming: Fundamentals [Internet]. Materials Park, Ohio: ASM International; 2012 [cited 2022 Apr 25]. Available from: https://search-ebscohost-com.bibliotecavirtual.unad.edu.co/login.aspx?direct=true&db=nlebk&AN=513307&lang=es&site=eds-live&scope=site

(13) ASTM E2218, Standard Test Method for Determining Forming Limit Curves. West Conshohocken: ASTM International; 2015.

(14) Vadavadagi B.H, Bhujle H.V, Khatirkar, R.K. Forming Limit Diagrams of Low-Carbon Steels Obtained Using Digital Image Correlation Technique and Enhanced Formability Predictions Incorporating Microstructural Developments. Journal of Materials Engineering and Performance [Internet] 2020 [cited 2022 Jul 9];29(1):6066–6077. Available from: https://doi.org/10.1007/s11665-020-05048-6 DOI: https://doi.org/10.1007/s11665-020-05048-6

(15) Safdarian R. Forming Limit Diagram Prediction of AISI 304–St 12 Tailor Welded Blanks Using GTN Damage Model. Journal of Testing and Evaluation [Internet] 2019 [cited 2022 Jul 9]; 48(6):1-15. Available from: https:// doi.org/10.1520/JTE20180069 DOI: https://doi.org/10.1520/JTE20180069

(16) Anand C, Ayush M, Nitin K, Swadesh K, Uma M, Reddy P. Influence of lubrication on forming limit diagram for Inconel 625 alloy at elevated temperaturas. Materials Today: Proceedings [Internet] 2021 [cited 2022 Jul 9]; 38(5): 2758-2763. Available from: https://doi.org/10.1016/j.matpr.2020.08.691 DOI: https://doi.org/10.1016/j.matpr.2020.08.691

(17) Pham Q, Nguyen-Thoi T, Nguyen D, Kim Y. A Comparative Investigation on Theoretical Models for Forming Limit Diagram Prediction of Sheet Metals. Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020). Lecture Notes in Mechanical Engineering. Springer [Internet] 2021 [cited 2022 Jul 9]. p. 94-100. Available from: https://doi.org/10.1007/978-3-030-69610-8_12 DOI: https://doi.org/10.1007/978-3-030-69610-8_12

(18) Gauri M, Ayush M, Nitin K, Amit K, Swadesh K, Y.C Lin. Forming and fracture limits of IN718 alloy at elevated temperatures: Experimental and theoretical investigation. Journal of Manufacturing Processes [Internet] 2020 [cited 2022 Jul 9]; 56(A): 482-499. Available from: https://doi.org/10.1016/j.jmapro.2020.04.070 DOI: https://doi.org/10.1016/j.jmapro.2020.04.070

(19) Kosuri D, Mudavath D, Sahadevudu R, Tapila V, Ch. Bandhavi. Experimental determination of forming limit diagram for α + β brass at hot forming conditions. Materials Today: Proceedings [Internet] 2022 [cited 2022 Jul 9]; 62(6): 4108-4116. Available from: https://doi.org/10.1016/j.matpr.2022.04.657 DOI: https://doi.org/10.1016/j.matpr.2022.04.657

(20) Cruz-González C, Vargas-Arista B, León-Méndez I, Guzmán-Flores I. On the application of the forming limit diagrams for quality control of blanks for wheelbarrow of ASTM A1008 carbon steel. revmetal [Internet]. 2022 Jul.5 [cited 2022Jul.16]; 58(1): e218. Available from: https://doi.org/10.3989/revmetalm.218 DOI: https://doi.org/10.3989/revmetalm.218

(21) Paul SK. Controlling factors of forming limit curve: A review. Advances in Industrial and Manufacturing Engineering. [Internet] 2021 [cited 2022 Jul 9];2(2021): 100033. Available from: https://doi.org/10.1016/j.aime.2021.100033 DOI: https://doi.org/10.1016/j.aime.2021.100033

(22) Barbosa J, García I, García V. Análisis de la formabilidad de láminas de acero AISI 304 con diferentes espesores mediante sus propiedades de tracción. Rev. UIS ing. [Internet]. 9 de diciembre de 2022 [citado 10 de diciembre de 2022];21(4):97-106. Disponible en: https://revistas.uis.edu.co/index.php/revistauisingenierias/article/view/13263

(23) Talyan V, Wagoner R.H, Lee J.K. Formability of stainless steel. Metall Mater Trans A. [Internet] 1998 [cited 2022 Apr 25]; 29(1): 2161–2172. Available from: https://doi.org/10.1007/s11661-998-0041-1 DOI: https://doi.org/10.1007/s11661-998-0041-1

(24) Rufini R, Di Pietro O, Di Schino A. Predictive Simulation of Plastic Processing of Welded Stainless Steel Pipes. Metals [Internet] 2018[cited 2022 Apr 25];8(7):519. Available from: http://dx.doi.org/10.3390/met8070519 DOI: https://doi.org/10.3390/met8070519

(25) Paul SK. Prediction of complete forming limit diagram from tensile properties of various steel sheets by a nonlinear regression based approach. [Internet] 2016 [cited 2022 Jul 9];23(2016): 192-200. Available from: https://doi.org/10.1016/j.jmapro.2016.06.005 DOI: https://doi.org/10.1016/j.jmapro.2016.06.005

Recibido 2022-12-21
Aceptado 2023-09-05
Publicado 2023-10-11