Influence of catalyst in the physicochemical properties of methyl esters obtained from Chrysobalanus icaco oil
Main Article Content
The icaco (Chrysobalanus icaco L.) is a plant with a maximum height of 6 meters that grows wild in regions with a tropical climate such as the District of Barrancabermeja; Despite its high agricultural potential, it is rarely used in craft or medicinal way, however, the oil extracted from its seed can have different uses in the energy industry; Such is the case of the present investigation, in which through the transesterification reaction and making the comparison with two homogeneous catalysts such as sodium hydroxide (NaOH) and potassium hydroxide (KOH) a mixture of methyl esters with potential use is obtained. like biodiesel. As a product of the reaction, volumetric yields between 61-90% were obtained, with sodium hydroxide being the catalyst that had the best performance for icaco oil as starting material. Finally, for the evaluation of the quality of the methyl esters obtained in the reaction, physicochemical tests were carried out, giving values of density between 0.87 - 0.89 g/mL, acidity index between 0.32 - 1.2 mg KOH/100 gr, peroxide index between 1.68 - 2.05 meq O2/Kg and iodine index between 13.19 - 18.2 g I2/100 gr; results that could give a potencial use as biofuels.
World Bioenergy Association. WBA GLOBAL BIOENERGY STATISTICS [Internet]. 2018. Available from: www.worldbioenergy.org
Torroba A. Atlas de los biocombustibles líquidos 2019-2020. Instituto Interamericano de Cooperación para la Agricultura (IICA). 2020;
Nayab R, Imran M, Ramzan M, Tariq M, Taj MB, Akhtar MN, et al. Sustainable biodiesel production via catalytic and non-catalytic transesterification of feedstock materials - A review. Fuel. 2022 Nov 15;328. https://doi.org/10.1016/j.fuel.2022.125254 DOI: https://doi.org/10.1016/j.fuel.2022.125254
Santacesaria E, Vicente GM, Di Serio M, Tesser R. Main technologies in biodiesel production: State of the art and future challenges. Vol. 195, Catalysis Today. 2012. p. 2-13. https://doi.org/10.1016/j.cattod.2012.04.057 DOI: https://doi.org/10.1016/j.cattod.2012.04.057
Rasheed T, Anwar MT, Ahmad N, Sher F, Khan SUD, Ahmad A, et al. Valorisation and emerging perspective of biomass based waste-to-energy technologies and their socio-environmental impact: A review. J Environ Manage. 2021 Jun 1;287. https://doi.org/10.1016/j.jenvman.2021.112257 DOI: https://doi.org/10.1016/j.jenvman.2021.112257
Srirangan K, Akawi L, Moo-Young M, Chou CP. Towards sustainable production of clean energy carriers from biomass resources. Appl Energy. 2012;100:172-86. https://doi.org/10.1016/j.apenergy.2012.05.012 DOI: https://doi.org/10.1016/j.apenergy.2012.05.012
Okonkwo CP, Ajiwe VIE, Obiadi MC, Okwu MO, Ayogu JI. Production of biodiesel from the novel non-edible seed of Chrysobalanus icaco using natural heterogeneous catalyst: Modeling and prediction using Artificial Neural Network. J Clean Prod. 2023 Jan 20;385. https://doi.org/10.1016/j.jclepro.2022.135631 DOI: https://doi.org/10.1016/j.jclepro.2022.135631
Medeiros De Aguiar T, Luo R, Mello AA, Hess Azevedo-Meleiro C, Ubirajara A, Sabaa-Srur O, et al. Chemical Characterization of Cocoplum (Chrysobalanus icaco, L) Seed Oil and Seeds. Journal of Regulatory Science. 2017;5(2):15-28. https://doi.org/10.21423/JRS-V05N02P015 DOI: https://doi.org/10.21423/JRS-V05N02P015
David Jiménez-Escobar N, Estupiñán-González AC. RIQUEZA DE ESPECIES ARBÓREAS UTILIZADAS POR LAS COMUNIDADES CAMPESINAS DEL CARIBE COLOMBIANO. Códice Ltda. 2012;12:653-76.
Acuña KG. Caracterización de Chrysobalanus icaco L. desde el componente etnobotánico, morfológico, fisicoquímico, organoléptico y agrologico del corregimiento El Centro-Barrancabermeja. [Bogotá]: Pontificia Universidad Javeriana; 2018.
Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification - A review. Vol. 10, Renewable and Sustainable Energy Reviews. 2006. p. 248-68. https://doi.org/10.1016/j.rser.2004.09.002 DOI: https://doi.org/10.1016/j.rser.2004.09.002
Pérez-Bravo SG, Aguilera-Vázque L, Castañeda-Chávez MDR, Gallardo-Rivas NV. Condiciones del proceso de transesterificación en la producción de biodiésel y sus distintos mecanismos de reacción. TIP Revista Especializada en Ciencias Químico-Biológicas [Internet]. 2022 Sep 14;25. Available from: http://tip.zaragoza.unam.mx/index.php/tip/article/view/481 https://doi.org/10.22201/fesz.23958723e.2022.481 DOI: https://doi.org/10.22201/fesz.23958723e.2022.481
Nisar S, Hanif MA, Rashid U, Hanif A, Akhtar MN, Ngamcharussrivichai C, et al. Trends in Widely Used Catalysts for Fatty Acid Methyl Esters (FAME) Production: A Review Academic Editors: José María. 2021; Available from: https://doi.org/10.3390/catal11091085 https://doi.org/10.3390/catal11091085 DOI: https://doi.org/10.3390/catal11091085
Vilas Bôas RN, Mendes MF. A Review Of Biodiesel Production From Non-Edible Raw Materials Using The Transesterification Process With A Focus On Influence Of Feedstock Composition And Free Fatty Acids. Vol. 67, J. Chil. Chem. Soc. 2022. https://doi.org/10.4067/S0717-97072022000105433 DOI: https://doi.org/10.4067/S0717-97072022000105433
Reyero I, Arzamendi G, Zabala S, Gandía LM. Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Processing Technology. 2015 Jan 1;129:147-55. https://doi.org/10.1016/j.fuproc.2014.09.008 DOI: https://doi.org/10.1016/j.fuproc.2014.09.008
Ferreira MJA, Mota MFS, Mariano RGB, Freitas SP. Evaluation of liquid-liquid extraction to reducing the acidity index of the tucuma (Astrocaryum vulgare Mart.) pulp oil. Sep Purif Technol. 2021 Feb 15;257. https://doi.org/10.1016/j.seppur.2020.117894 DOI: https://doi.org/10.1016/j.seppur.2020.117894
Zhang N, Li Y, Wen S, Sun Y, Chen J, Gao Y, et al. Analytical methods for determining the peroxide value of edible oils: A mini-review. Vol. 358, Food Chemistry. Elsevier Ltd; 2021. https://doi.org/10.1016/j.foodchem.2021.129834 DOI: https://doi.org/10.1016/j.foodchem.2021.129834
Hoang AT, Pham VV. Impact of Jatropha Oil on Engine Performance, Emission Characteristics, Deposit Formation, and Lubricating Oil Degradation. Combustion Science and Technology. 2019 Mar 4;191(3):504-19. https://doi.org/10.1080/00102202.2018.1504292 DOI: https://doi.org/10.1080/00102202.2018.1504292
Ruswanto A, Ramelan AH, Praseptiangga D, Partha IBB. The study of carotene content and iodine value of oil from different ripening levels and storage duration of palm fresh fruit bunches. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd; 2021. https://doi.org/10.1088/1755-1315/709/1/012022 DOI: https://doi.org/10.1088/1755-1315/709/1/012022
Alptekin E, Canakci M. Optimization of transesterification for methyl ester production from chicken fat. Fuel. 2011 Aug;90(8):2630-8. https://doi.org/10.1016/j.fuel.2011.03.042 DOI: https://doi.org/10.1016/j.fuel.2011.03.042
Gorey N, Ghosh S, Srivastava P, Kumar V. Characterization of Palm Oil as Biodiesel. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing; 2017. https://doi.org/10.1088/1757-899X/225/1/012220 DOI: https://doi.org/10.1088/1757-899X/225/1/012220
Accepted 2023-07-27
Published 2023-06-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).