Contenido principal del artículo

Autores

El presente artículo tiene como objetivo realizar una revisión del impacto ambiental generado por los contaminantes emergentes (CE) en el entorno acuático y la manera de tratarlos, al ser descargados en los cuerpos hídricos. Se presenta una visión global y una visión a nivel regional (Latinoamérica) de los contaminantes emergentes presentes en el agua bien sea agua residual doméstica, agua residual industrial o agua potable para de esta manera identificar cuáles son los principales contaminantes emergentes (CE) y mostrar la importancia y el impacto que tienen sobre el ambiente y las repercusiones debidas al desconocimiento y la falta de legislación al momento de controlar los vertimientos sobre los cuerpos hídricos. Las eficiencias de remoción para los contaminantes emergentes mediante tratamientos comunes (coagulación, floculación, sedimentación, etc.) son medianamente aceptables con valores entre un 30% y 60% mientras que a través de tratamientos terciarios (oxidación avanzada, tratamientos con peróxido de hidrogeno, luz UV, etc.) alcanza porcentajes entre un 80% y un 95% indicando la alta capacidad para remover los contaminantes.

Harvey Andres Milquez Sanabria, Universidad de América. Bogotá Colombia

https://orcid.org/0000-0003-4515-7039

Juan Camilo Montagut, Universidad de América. Bogotá Colombia

https://orcid.org/0009-0007-7765-1353

1.
Milquez Sanabria HA, Montagut JC. Impacto de los contaminantes emergentes en el entorno acuático y los tratamientos para el control y remoción en los cuerpos hídricos. Revisión literaria. inycomp [Internet]. 13 de septiembre de 2023 [citado 9 de mayo de 2024];25(3):e-30412551. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12551

Van Dijk M, Morley T, Rau ML, Saghai Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nat Food. 2021;2(7):494-501. https://doi.org/10.1038/s43016-021-00322-9 DOI: https://doi.org/10.1038/s43016-021-00322-9

Botello YMR, Cabrera JAB, Hidalgo RMA, Reyes AS, Toledo DRG. Dimensionamiento de un biodigestor para el tratamiento de excretas de cerdos: e317. Rev Cuba Ing. 2022;13(1).

Rout PR, Zhang TC, Bhunia P, Surampalli RY. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci Total Environ. 2021;753:141990.https://doi.org/10.1016/j.scitotenv.2020.141990 DOI: https://doi.org/10.1016/j.scitotenv.2020.141990

Tang Y, Yin M, Yang W, Li H, Zhong Y, Mo L, et al. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ Res [Internet]. 2019 Oct 1;91(10):984-91. Available from: https://doi.org/10.1002/wer.1163https://doi.org/10.1002/wer.1163 DOI: https://doi.org/10.1002/wer.1163

Flórez JA, Méndez DM, Núñez SB, Montes GE, Negrete JM. Productos farmacéuticos y de cuidado personal presentes en aguas superficiales, de consumo humano y residuales en el departamento de Córdoba, Colombia. Rev Investig Agrar y Ambient. 2021;12(2):179-97. https://doi.org/10.22490/21456453.4231 DOI: https://doi.org/10.22490/21456453.4231

Peña-Guzmán C, Ulloa-Sánchez S, Mora K, Helena-Bustos R, Lopez-Barrera E, Alvarez J, et al. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J Environ Manage. 2019;237:408-23.https://doi.org/10.1016/j.jenvman.2019.02.100 DOI: https://doi.org/10.1016/j.jenvman.2019.02.100

Vasilachi IC, Asiminicesei DM, Fertu DI, Gavrilescu M. Occurrence and fate of emerging pollutants in water environment and options for their removal. Water. 2021;13(2):181 https://doi.org/10.3390/w13020181 DOI: https://doi.org/10.3390/w13020181

Hube S, Wu B. Mitigation of emerging pollutants and pathogens in decentralized wastewater treatment processes: A review. Sci Total Environ. 2021;779:146545.https://doi.org/10.1016/j.scitotenv.2021.146545 DOI: https://doi.org/10.1016/j.scitotenv.2021.146545

Kumar M, Borah P, Devi P. Priority and emerging pollutants in water. In: Inorganic Pollutants in Water. Elsevier; 2020. p. 33-49. https://doi.org/10.1016/B978-0-12-818965-8.00003-2 DOI: https://doi.org/10.1016/B978-0-12-818965-8.00003-2

Kitchenham B. Procedures for performing systematic reviews. Keele, UK, Keele Univ. 2004;33(2004):1-26.

Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM. Emerging contaminants of high concern for the environment: Current trends and future research. Environ Res. 2022;207:112609.https://doi.org/10.1016/j.envres.2021.112609 DOI: https://doi.org/10.1016/j.envres.2021.112609

Rathi BS, Kumar PS, Show P-L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J Hazard Mater. 2021;409:124413. https://doi.org/10.1016/j.jhazmat.2020.124413 DOI: https://doi.org/10.1016/j.jhazmat.2020.124413

Elaiyaraja A, Mayilsamy M, Vimalkumar K, Nikhil NP, Noorani PM, Bommuraj V, et al. Aquatic and human health risk assessment of humanogenic emerging contaminants (HECs), phthalate esters from the Indian Rivers. Chemosphere. 2022;306:135624. https://doi.org/10.1016/j.chemosphere.2022.135624 DOI: https://doi.org/10.1016/j.chemosphere.2022.135624

Carrizo JC, Duy SV, Munoz G, Marconi G, Amé MV, Sauvé S. Suspect screening of pharmaceuticals, illicit drugs, pesticides, and other emerging contaminants in Argentinean Piaractus mesopotamicus, a fish species used for local consumption and export. Chemosphere. 2022;309:136769. https://doi.org/10.1016/j.chemosphere.2022.136769 DOI: https://doi.org/10.1016/j.chemosphere.2022.136769

Almazrouei B, Islayem D, Alskafi F, Catacutan MK, Amna R, Nasrat S, et al. Steroid hormones in wastewater: Sources, treatments, environmental risks, and regulations. Emerg Contam. 2023;9(2):100210. https://doi.org/10.1016/j.emcon.2023.100210 DOI: https://doi.org/10.1016/j.emcon.2023.100210

Duré GM, Medina García L, Rodríguez Bonet S, Ferrreira F, Sezerino PH, López Arias T. Phytoremediation of pharmaceutical emerging contaminants in floating wetlands. Reportes científicos la FACEN. 2022;13(2):153-9. https://doi.org/10.18004/rcfacen.2022.13.2.153 DOI: https://doi.org/10.18004/rcfacen.2022.13.2.153

Morin-Crini N, Lichtfouse E, Fourmentin M, Ribeiro ARL, Noutsopoulos C, Mapelli F, et al. Removal of emerging contaminants from wastewater using advanced treatments. A review. Environ Chem Lett. 2022;20(2):1333-75. https://doi.org/10.1007/s10311-021-01379-5 DOI: https://doi.org/10.1007/s10311-021-01379-5

Gong X, Li K, Wu C, Wang L, Sun H. Passive sampling for monitoring polar organic pollutants in water by three typical samplers. Trends Environ Anal Chem. 2018;17:23-33.https://doi.org/10.1016/j.teac.2018.01.002 DOI: https://doi.org/10.1016/j.teac.2018.01.002

Chia RW, Lee J-Y, Kim H, Jang J. Microplastic pollution in soil and groundwater: a review. Environ Chem Lett. 2021;19(6):4211-24. https://doi.org/10.1007/s10311-021-01297-6 DOI: https://doi.org/10.1007/s10311-021-01297-6

Peng Y, Fang W, Krauss M, Brack W, Wang Z, Li F, et al. Screening hundreds of emerging organic pollutants (EOPs) in surface water from the Yangtze River Delta (YRD): occurrence, distribution, ecological risk. Environ Pollut. 2018;241:484-93. https://doi.org/10.1016/j.envpol.2018.05.061 DOI: https://doi.org/10.1016/j.envpol.2018.05.061

Ginebreda A, Sabater-Liesa L, Rico A, Focks A, Barceló D. Reconciling monitoring and modeling: An appraisal of river monitoring networks based on a spatial autocorrelation approach-emerging pollutants in the Danube River as a case study. Sci Total Environ. 2018;618:323-35. https://doi.org/10.1016/j.scitotenv.2017.11.020 DOI: https://doi.org/10.1016/j.scitotenv.2017.11.020

de Sousa DNR, Mozeto AA, Carneiro RL, Fadini PS. Spatio-temporal evaluation of emerging contaminants and their partitioning along a Brazilian watershed. Environ Sci Pollut Res. 2018;25:4607-20. https://doi.org/10.1007/s11356-017-0767-7 DOI: https://doi.org/10.1007/s11356-017-0767-7

Santos MM, Ruivo R, Capitão A, Fonseca E, Castro LFC. Identifying the gaps: Resources and perspectives on the use of nuclear receptor based-assays to improve hazard assessment of emerging contaminants. J Hazard Mater. 2018;358:508-11. https://doi.org/10.1016/j.jhazmat.2018.04.076 DOI: https://doi.org/10.1016/j.jhazmat.2018.04.076

Pesqueira JFJR, Pereira MFR, Silva AMT. Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: a review. J Clean Prod. 2020;261:121078. https://doi.org/10.1016/j.jclepro.2020.121078 DOI: https://doi.org/10.1016/j.jclepro.2020.121078

Valdez-Carrillo M, Abrell L, Ramírez-Hernández J, Reyes-López JA, Carreón-Diazconti C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. Environ Sci Pollut Res. 2020;27:44863-91. https://doi.org/10.1007/s11356-020-10842-9 DOI: https://doi.org/10.1007/s11356-020-10842-9

Souza MCO, Rocha BA, Adeyemi JA, Nadal M, Domingo JL, Barbosa Jr F. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. Sci Total Environ. 2022;848:157774. https://doi.org/10.1016/j.scitotenv.2022.157774 DOI: https://doi.org/10.1016/j.scitotenv.2022.157774

Vargas-Berrones K, Bernal-Jácome L, de León-Martínez LD, Flores-Ramírez R. Emerging pollutants (EPs) in Latin América: A critical review of under-studied EPs, case of study-Nonylphenol. Sci Total Environ. 2020;726:138493. https://doi.org/10.1016/j.scitotenv.2020.138493 DOI: https://doi.org/10.1016/j.scitotenv.2020.138493

Angel-Ospina AC, Machuca-Martínez F. Ozonización catalítica en el tratamiento de Contaminantes de Preocupación Emergente en aguas residuales: Un análisis bibliométrico. Ing y Compet. 2022;24(1). https://doi.org/10.25100/iyc.v24i1.11603 DOI: https://doi.org/10.25100/iyc.v24i1.11603

Becerra D, Arteaga BL, Ochoa YE, Barajas-Solano AF, García-Martínez JB, Ramírez LF. Acople de fotocatálisis heterogénea y proceso biológico aerobio de lodos activados para tratar aguas residuales con contenido de Clorpirifos. Ing Y Compet. 2020;22(1):1-12.https://doi.org/10.25100/iyc.v22i1.8135 DOI: https://doi.org/10.25100/iyc.v22i1.8135

Tejada-Tovar CN, Villabona-Ortíz A, Colpas-Castillo F, Sanmartín-Álvarez Z, Landázury-Galé D. Biochars derivados de cacao sintetizados a baja temperatura impregnados con cloruro de zinc para la eliminación de ibuprofeno en diferentes soluciones. Ing y Competividad. 2022;24(1):NA-NA. https://doi.org/10.25100/iyc.v24i1.10941 DOI: https://doi.org/10.25100/iyc.v24i1.10941

Tejada CN, Almanza D, Villabona A, Colpas F, Granados C. Caracterización de carbón activado sintetizado a baja temperatura a partir de cáscara de cacao (Theobroma cacao) para la adsorción de amoxicilina. Ing Y Compet. 2017;19(2):43-52. https://doi.org/10.25100/iyc.v19i2.5292 DOI: https://doi.org/10.25100/iyc.v19i2.5292

Margarita-Guerra M, Arrieta-Pérez R, Colina-Marquez J. Modelado de un Reactor Solar Fotocatalítico Heterogéneo con Ti [O. sub. 2] para el Tratamiento de Agua Residual Contaminada con Albendazol. Ing y Competividad. 2019;21(2):NA-NA.

Reichert G, Hilgert S, Fuchs S, Azevedo JCR. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environ Pollut. 2019;255:113140. https://doi.org/10.1016/j.envpol.2019.113140 DOI: https://doi.org/10.1016/j.envpol.2019.113140

Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P, et al. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ Res. 2021;194:110664. https://doi.org/10.1016/j.envres.2020.110664 DOI: https://doi.org/10.1016/j.envres.2020.110664

Yadav D, Rangabhashiyam S, Verma P, Singh P, Devi P, Kumar P, et al. Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere. 2021;272:129492. https://doi.org/10.1016/j.chemosphere.2020.129492 DOI: https://doi.org/10.1016/j.chemosphere.2020.129492

deNoyelles F, Dewey SL, Huggins DG, Kettle WD. Aquatic mesocosms in ecological effects testing: detecting direct and indirect effects of pesticides. In: Aquatic mesocosm studies in ecological risk assessment. CRC Press; 2020. p. 577-603. https://doi.org/10.1201/9781003070016-36 DOI: https://doi.org/10.1201/9781003070016-36

Zhang J, Zhang C, Du Z, Zhu L, Wang J, Wang J, et al. Emerging contaminant 1, 3, 6, 8-tetrabromocarbazole induces oxidative damage and apoptosis during the embryonic development of zebrafish (Danio rerio). Sci Total Environ. 2020;743:140753. https://doi.org/10.1016/j.scitotenv.2020.140753 DOI: https://doi.org/10.1016/j.scitotenv.2020.140753

Wang C, Chen H, Li H, Yu J, Wang X, Liu Y. Review of emerging contaminant tris (1, 3-dichloro-2-propyl) phosphate: Environmental occurrence, exposure, and risks to organisms and human health. Environ Int. 2020;143:105946. https://doi.org/10.1016/j.envint.2020.105946 DOI: https://doi.org/10.1016/j.envint.2020.105946

Baralla E, Demontis MP, Dessì F, Varoni M V. An overview of antibiotics as emerging contaminants: Occurrence in bivalves as biomonitoring organisms. Animals. 2021;11(11):3239. https://doi.org/10.3390/ani11113239 DOI: https://doi.org/10.3390/ani11113239

Baines C, Lerebours A, Thomas F, Fort J, Kreitsberg R, Gentes S, et al. Linking pollution and cancer in aquatic environments: A review. Environ Int. 2021;149:106391. https://doi.org/10.1016/j.envint.2021.106391 DOI: https://doi.org/10.1016/j.envint.2021.106391

Song X, Zhuo Q, Tang S, Xie T, Chen Z, Zang Z, et al. Concentrations of phthalates metabolites in blood and semen and the potential effects on semen concentration and motility among residents of the Pearl River Delta region in China. Emerg Contam. 2020;6:39-43. https://doi.org/10.1016/j.emcon.2019.12.002 DOI: https://doi.org/10.1016/j.emcon.2019.12.002

Morin-Crini N, Lichtfouse E, Liu G, Balaram V, Ribeiro ARL, Lu Z, et al. Worldwide cases of water pollution by emerging contaminants: a review. Environ Chem Lett. 2022;20(4):2311-38. https://doi.org/10.1007/s10311-022-01447-4 DOI: https://doi.org/10.1007/s10311-022-01447-4

Rathi BS, Kumar PS. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ Pollut. 2021;280:116995.https://doi.org/10.1016/j.envpol.2021.116995 DOI: https://doi.org/10.1016/j.envpol.2021.116995

Lopez FJ, Pitarch E, Botero-Coy AM, Fabregat-Safont D, Ibáñez M, Marin JM, et al. Removal efficiency for emerging contaminants in a WWTP from Madrid (Spain) after secondary and tertiary treatment and environmental impact on the Manzanares River. Sci Total Environ. 2022;812:152567. https://doi.org/10.1016/j.scitotenv.2021.152567 DOI: https://doi.org/10.1016/j.scitotenv.2021.152567

Arvaniti OS, Dasenaki ME, Asimakopoulos AG, Maragou NC, Samaras VG, Antoniou K, et al. Effectiveness of tertiary treatment processes in removing different classes of emerging contaminants from domestic wastewater. Front Environ Sci Eng. 2022;16(11):148.https://doi.org/10.1007/s11783-022-1583-y DOI: https://doi.org/10.1007/s11783-022-1583-y

Koch N, Islam NF, Sonowal S, Prasad R, Sarma H. Environmental antibiotics and resistance genes as emerging contaminants: methods of detection and bioremediation. Curr Res Microb Sci. 2021;2:100027. https://doi.org/10.1016/j.crmicr.2021.100027 DOI: https://doi.org/10.1016/j.crmicr.2021.100027

Samal K, Mahapatra S, Ali MH. Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus. 2022;6:100076. https://doi.org/10.1016/j.nexus.2022.100076 DOI: https://doi.org/10.1016/j.nexus.2022.100076

Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. J Hazard Mater. 2021;416:125912 https://doi.org/10.1016/j.jhazmat.2021.125912 DOI: https://doi.org/10.1016/j.jhazmat.2021.125912

Parida VK, Saidulu D, Majumder A, Srivastava A, Gupta B, Gupta AK. Emerging contaminants in wastewater: A critical review on occurrence, existing legislations, risk assessment, and sustainable treatment alternatives. J Environ Chem Eng. 2021;9(5):105966.https://doi.org/10.1016/j.jece.2021.105966 DOI: https://doi.org/10.1016/j.jece.2021.105966

Mecha AC, Chollom MN. Photocatalytic ozonation of wastewater: a review. Environ Chem Lett. 2020;18:1491-507. https://doi.org/10.1007/s10311-020-01020-x DOI: https://doi.org/10.1007/s10311-020-01020-x

Hasan HA, Abdullah SRS, Al-Attabi AWN, Nash DAH, Anuar N, Rahman NA, et al. Removal of ibuprofen, ketoprofen, COD and nitrogen compounds from pharmaceutical wastewater using aerobic suspension-sequencing batch reactor (ASSBR). Sep Purif Technol. 2016;157:215-21. https://doi.org/10.1016/j.seppur.2015.11.017 DOI: https://doi.org/10.1016/j.seppur.2015.11.017

Nguyen LN, van de Merwe JP, Hai FI, Leusch FDL, Kang J, Price WE, et al. Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity. Bioresour Technol. 2016;200:477-84. https://doi.org/10.1016/j.biortech.2015.10.054 DOI: https://doi.org/10.1016/j.biortech.2015.10.054

Ávila C, García-Galán MJ, Borrego CM, Rodríguez-Mozaz S, García J, Barceló D. New insights on the combined removal of antibiotics and ARGs in urban wastewater through the use of two configurations of vertical subsurface flow constructed wetlands. Sci Total Environ. 2021;755:142554. https://doi.org/10.1016/j.scitotenv.2020.142554 DOI: https://doi.org/10.1016/j.scitotenv.2020.142554

Lakho FH, Le HQ, Van Kerkhove F, Igodt W, Depuydt V, Desloover J, et al. Water treatment and re-use at temporary events using a mobile constructed wetland and drinking water production system. Sci Total Environ. 2020;737:139630. https://doi.org/10.1016/j.scitotenv.2020.139630 DOI: https://doi.org/10.1016/j.scitotenv.2020.139630

Meza LC, Piotrowski P, Farnan J, Tasker TL, Xiong B, Weggler B, et al. Detection and removal of biologically active organic micropollutants from hospital wastewater. Sci Total Environ. 2020;700:134469. https://doi.org/10.1016/j.scitotenv.2019.134469 DOI: https://doi.org/10.1016/j.scitotenv.2019.134469

Top S, Akgün M, Kıpçak E, Bilgili MS. Treatment of hospital wastewater by supercritical water oxidation process. Water Res. 2020;185:116279. https://doi.org/10.1016/j.watres.2020.116279 DOI: https://doi.org/10.1016/j.watres.2020.116279

Vela N, Fenoll J, Garrido I, Pérez-Lucas G, Flores P, Hellín P, et al. Reclamation of agro-wastewater polluted with pesticide residues using sunlight activated persulfate for agricultural reuse. Sci Total Environ. 2019;660:923-30. https://doi.org/10.1016/j.scitotenv.2019.01.060 DOI: https://doi.org/10.1016/j.scitotenv.2019.01.060

Matamoros V, Rodríguez Y, Albaigés J. A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities. Water Res. 2016;88:777-85. https://doi.org/10.1016/j.watres.2015.10.058 DOI: https://doi.org/10.1016/j.watres.2015.10.058

Cesaro A, Belgiorno V. Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review. Open Biotechnol J. 2016;10(1). https://doi.org/10.2174/1874070701610010151 DOI: https://doi.org/10.2174/1874070701610010151

Recibido 2022-10-24
Aceptado 2023-09-05
Publicado 2023-09-13