Contenido principal del artículo

Autores

El alto impacto ambiental de los desechos sólidos y líquidos que contienen elementos tóxicos y metales está teniendo un impacto negativo en diversos ecosistemas, este trabajo tiene como objetivo realizar una revisión sistemática y análisis bibliométrico de la producción científica, con la esperanza de comprender la capacidad de retención y absorción de biocarbón, análisis Capacidad de diferentes biochars para ciertos elementos contaminantes incluyendo metales pesados; el análisis bibliométrico se realizó a través de una revisión de las bases de datos web of science (WoS) y Scopus. Los registros obtenidos se analizan utilizando teoría de grafos y herramientas como bibliometrix, Sci2 Tool, Gephi, se dividen en tres categorías: clásica, estructural y reciente, donde se obtienen tres perspectivas: captación de metales pesados, biodisponibilidad y contaminantes; De igual manera, se identificó que el campo de estudio es nuevo. El principal autor es Yang Yi, autores importantes como Geng Yong y Liang Dong cuentan con un H-index bastante alto. Adicionalmente, los países con mayor producción en el tema son: CHINA que ocupa el primer lugar, USA con el segundo lugar y KOREA con el tercer puesto.

Christian Felipe Valderrama, Externo

https://orcid.org/0000-0003-2260-5046

Paola Villegas-Guzman, Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta y a Distan-cia, Neiva, Colombia

Química, Doctora en Ciencias Químicas

https://orcid.org/0000-0002-3849-8209

Juan Pablo Herrera, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia, Colombia

Ingeniero Ambiental de la Universidad del Bosque, Magister en Marketing Digital y Comercio Electrónico

https://orcid.org/0000-0001-8876-8759 

Javier Silva-Agredo, University of Antioquia

https://orcid.org/0000-0002-8230-0917

1.
Valderrama CF, Villegas-Guzman P, Herrera JP, Silva-Agredo J. Análisis de biochar y metales: una revisión sistemática y análisis bibliométrico. inycomp [Internet]. 3 de agosto de 2023 [citado 27 de abril de 2024];25(3):e-30112505. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12505

Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut [Internet]. 2011 Feb;159(2):474–80. Available from: http://dx.doi.org/10.1016/j.envpol.2010.10.016 DOI: https://doi.org/10.1016/j.envpol.2010.10.016

Chen D Et Al. Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis. J Environ Manage [Internet]. 2018 Sep 15 [cited 2022 Apr 22];222:76–85. Available from: http://dx.doi.org/10.1016/j.jenvman.2018.05.004 DOI: https://doi.org/10.1016/j.jenvman.2018.05.004

Park J, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil [Internet]. 2011 Aug 19 [cited 2022 Apr 21];348(1):439–51. Available from: https://link.springer.com/article/10.1007/s11104-011-0948-y DOI: https://doi.org/10.1007/s11104-011-0948-y

M Ahmad, Rajapaksha AU, EunLim J, Zhang M, Bolan N, Mohan D, et al. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere [Internet]. 2014 Mar 1 [cited 2022 Apr 21];99:19–33. Available from: http://dx.doi.org/10.1016/j.chemosphere.2013.10.071 DOI: https://doi.org/10.1016/j.chemosphere.2013.10.071

Al-Wabel MI, Usman ARA, El-Naggar AH, Aly AA, Ibrahim HM, Elmaghraby S, et al. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi J Biol Sci [Internet]. 2015 Jul;22(4):503–11. Available from: http://dx.doi.org/10.1016/j.sjbs.2014.12.003 DOI: https://doi.org/10.1016/j.sjbs.2014.12.003

Bandara T, Herath I, Kumarathilaka P, Hseu ZY, Ok YS, Vithanage M. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil. Environ Geochem Health [Internet]. 2017 Apr;39(2):391–401. Available from: http://dx.doi.org/10.1007/s10653-016-9842-0 DOI: https://doi.org/10.1007/s10653-016-9842-0

Yang X, Liu J, McGrouther K, Huang H, Lu K, Guo X, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ Sci Pollut Res Int [Internet]. 2016 Jan;23(2):974–84. Available from: http://dx.doi.org/10.1007/s11356-015-4233-0 DOI: https://doi.org/10.1007/s11356-015-4233-0

Wang Y., Et Al. Stabilization of heavy metal-contaminated soils by biochar: Challenges and recommendations. Sci Total Environ [Internet]. 2020 Aug 10;729:139060. Available from: http://dx.doi.org/10.1016/j.scitotenv.2020.139060 DOI: https://doi.org/10.1016/j.scitotenv.2020.139060

Karami N, Clemente R, Jiménez EM, Lepp NW, Beesley L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater [Internet]. 2011 Jul 15 [cited 2022 Apr 21];191(1-3):41–8. Available from: http://dx.doi.org/10.1016/j.jhazmat.2011.04.025 DOI: https://doi.org/10.1016/j.jhazmat.2011.04.025

Sci2 Team. Sci2 Tool : A Tool for Science of Science Research and Practice [Internet]. 2009 [cited 2022 Sep 2]. Available from: https://sci2.cns.iu.edu/user/index.php

Bastian M., Heymann S., Jacomy M. Gephi : An Open Source Software for Exploring and Manipulating Networks [Internet]. 2009. Available from: https://gephi.org/publications/gephi-bastian-feb09.pdf

Čater, Zupic. Bibliometric Methods in Management and Organization [Internet]. Vol. 18, Organizational Research Methods. 2015. p. 429–72. Available from: http://dx.doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629

Echchakoui S. Why and how to merge Scopus and Web of Science during bibliometric analysis: the case of sales force literature from 1912 to 2019. J Market Anal [Internet]. 2020 Sep 29;8(3):165–84. Available from: http://link.springer.com/10.1057/s41270-020-00081-9 DOI: https://doi.org/10.1057/s41270-020-00081-9

Zhu J, Liu W. A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics [Internet]. 2020 Apr 22;123(1):321–35. Available from: http://link.springer.com/10.1007/s11192-020-03387-8 DOI: https://doi.org/10.1007/s11192-020-03387-8

Pranckutė R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications [Internet]. 2021 Mar 12 [cited 2022 Jan 13];9(1):12. Available from: https://www.mdpi.com/2304-6775/9/1/12 DOI: https://doi.org/10.3390/publications9010012

Vera BMA, Thelwall M, Kousha K. Web of Science and Scopus language coverage. Scientometrics [Internet]. 2019 Oct 12 [cited 2021 Mar 23];121(3):1803–13. Available from: https://link.springer.com/article/10.1007/s11192-019-03264-z DOI: https://doi.org/10.1007/s11192-019-03264-z

Aria M, Cuccurullo C. bibliometrix : An R-tool for comprehensive science mapping analysis. J Informetr [Internet]. 2017 Nov;11(4):959–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1751157717300500 DOI: https://doi.org/10.1016/j.joi.2017.08.007

Tani M, Papaluca O, Sasso P. The System Thinking Perspective in the Open-Innovation Research: A Systematic Review. JOItmC [Internet]. 2018 Aug 18;4(3):38. Available from: http://www.mdpi.com/2199-8531/4/3/38 DOI: https://doi.org/10.3390/joitmc4030038

Duque P, Samboni V, Castro M, Montoya LA, Montoya IA. Neuromarketing: Its current status and research perspectives. Estudios Gerenciales [Internet]. 2020 [cited 2020 Nov 20];36(157). Available from: https://doi.org/10.18046/j.estger.2020.157.3890 DOI: https://doi.org/10.18046/j.estger.2020.157.3890

Duque P, Trejos D, Hoyos O, Mesa JCC. Finanzas corporativas y sostenibilidad: un análisis bibliométrico e identificación de tendencias. Semestre Económico [Internet]. 2021 Jan 1 [cited 2022 Feb 24];24(56):25–51. Available from: https://revistas.udem.edu.co/index.php/economico/article/view/3645 DOI: https://doi.org/10.22395/seec.v24n56a1

Acevedo JP, Robledo S, Sepúlveda MZ. Subáreas de internacionalización de emprendimientos: una revisión bibliográfica. Econ CUC [Internet]. 2020 Dec 3;42(1):249–68. Available from: https://revistascientificas.cuc.edu.co/economicascuc/article/view/3186 DOI: https://doi.org/10.17981/econcuc.42.1.2021.Org.7

Secinaro S, Francesca DM, Brescia V, Calandra D. Blockchain in the accounting, auditing and accountability fields: a bibliometric and coding analysis. Accounting, Auditing & Accountability Journal [Internet]. 2021 Jan 1;ahead-of-print(ahead-of-print). Available from: https://doi.org/10.1108/AAAJ-10-2020-4987 DOI: https://doi.org/10.1108/AAAJ-10-2020-4987

Landinez DA, Robledo Giraldo S, Montoya Londoño DM. Executive Function performance in patients with obesity: A systematic review. Psychol [Internet]. 2019 Nov 20;13(2):121–34. Available from: https://190.131.242.67/index.php/Psychologia/article/view/4230 DOI: https://doi.org/10.21500/19002386.4230

Di Vaio A, Palladino R, Pezzi A, Kalisz DE. The role of digital innovation in knowledge management systems: A systematic literature review. J Bus Res [Internet]. 2021 Feb 1;123:220–31. Available from: https://www.sciencedirect.com/science/article/pii/S0148296320306238 DOI: https://doi.org/10.1016/j.jbusres.2020.09.042

Queiroz MM, Fosso Wamba S. A structured literature review on the interplay between emerging technologies and COVID-19 - insights and directions to operations fields. Ann Oper Res [Internet]. 2021 Jun 30;1–27. Available from: http://dx.doi.org/10.1007/s10479-021-04107-y DOI: https://doi.org/10.1007/s10479-021-04107-y

Yang S, Keller FB, Zheng L. Social Network Analysis: Methods and Examples [Internet]. SAGE Publications; 2016. 248 p. Available from: https://books.google.com/books/about/Social_Network_Analysis.html?hl=&id=2ZNlDQAAQBAJ DOI: https://doi.org/10.4135/9781071802847

Wallis WD. A Beginner’s Guide to Graph Theory [Internet]. Springer, editor. Birkhäuser Boston; 2007. Available from: http://dx.doi.org/10.1007/978-0-8176-4580-9 DOI: https://doi.org/10.1007/978-0-8176-4580-9

Freeman LC. A Set of Measures of Centrality Based on Betweenness. Sociometry [Internet]. 1977 Mar;40(1):35. Available from: https://www.jstor.org/stable/3033543?origin=crossref DOI: https://doi.org/10.2307/3033543

Zhang J, Luo Y. Degree Centrality, Betweenness Centrality, and Closeness Centrality in Social Network. In: Atlantis Press, editor. Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017) [Internet]. 2017. p. 300–3. Available from: http://dx.doi.org/10.2991/msam-17.2017.68 DOI: https://doi.org/10.2991/msam-17.2017.68

Zuschke N. An analysis of process-tracing research on consumer decision-making. J Bus Res [Internet]. 2020 Apr;111:305–20. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0148296319300281 DOI: https://doi.org/10.1016/j.jbusres.2019.01.028

Gurzki H, Woisetschläger DM. Mapping the luxury research landscape: A bibliometric citation analysis. J Bus Res [Internet]. 2017 Aug;77:147–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0148296316306336 DOI: https://doi.org/10.1016/j.jbusres.2016.11.009

Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media [Internet]. 2009 [cited 2019 Oct 9]; Available from: https://gephi.org/users/publications/ DOI: https://doi.org/10.1609/icwsm.v3i1.13937

Robledo S, Osorio G, Lopez C. Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Vinculos [Internet]. 2014 Dec 19 [cited 2019 Oct 9];11(2):6–16. Available from: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/9664

Valencia HDS, Robledo S, Pinilla R, Duque MND, Gerard OT. SAP Algorithm for Citation Analysis: An improvement to Tree of Science. Ing Inv [Internet]. 2020 Jan 1;40(1):45–9. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/77718 DOI: https://doi.org/10.15446/ing.investig.v40n1.77718

Buitrago S, Duque P, Robledo S. Branding Corporativo: una revisión bibliográfica. Económicas CUC [Internet]. 2020 [cited 2020 Mar 2];41(1). Available from: https://revistascientificas.cuc.edu.co/economicascuc/article/view/2636 DOI: https://doi.org/10.17981/econcuc.41.1.2020.Org.1

Duque P, Cervantes LS. Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales [Internet]. 2019 Dec 4;35 (153 Oct-Dic 2019):451–64. Available from: https://www.icesi.edu.co/revistas/index.php/estudios_gerenciales/article/view/3389 DOI: https://doi.org/10.18046/j.estger.2019.153.3389

Duque P, Meza O, Zapata G, Giraldo J. Internacionalización de empresas latinas: evolución y tendencias. ECONÓMICAS CUC [Internet]. 2021 [cited 2020 Nov 15];42(1). Available from: https://revistascientificas.cuc.edu.co/economicascuc/article/view/3012 DOI: https://doi.org/10.17981/econcuc.42.1.2021.Org.1

Ramos V, Duque P, Vieira JA. Responsabilidad Social Corporativa y Emprendimiento: evolución y tendencias de investigación. DESARROLLOGERENCIAL [Internet]. 2021 Apr 8 [cited 2021 Sep 6];13(1):1–34. Available from: http://revistas.unisimon.edu.co/index.php/desarrollogerencial/article/view/4210 DOI: https://doi.org/10.17081/dege.13.1.4210

Duque P, Toro A, Ramírez D, Carvajal ME. Marketing viral: Aplicación y tendencias. Clío América [Internet]. 2020 Mar 3 [cited 2021 Sep 6];14(27):454–68. Available from: http://revistas.unimagdalena.edu.co/index.php/clioamerica/article/view/3759 DOI: https://doi.org/10.21676/23897848.3759

Duque P, Meza OE, Giraldo D, Barreto K. Economía Social y Economía Solidaria: un análisis bibliométrico y revisión de literatura. REVESCO Revista de Estudios Cooperativos [Internet]. 2021 Jun 14 [cited 2021 Jul 17];138:e75566–e75566. Available from: https://revistas.ucm.es/index.php/REVE/article/view/75566 DOI: https://doi.org/10.5209/reve.75566

Trejos-Salazar DF, Duque PL, Montoya LA, Montoya IA. Neuroeconomía: una revisión basada en técnicas de mapeo científico. REVISTA DE INVESTIGACIÓN, DESARROLLO E INNOVACIÓN [Internet]. 2021 Feb 15 [cited 2021 Jul 17];11(2):243–60. Available from: https://revistas.uptc.edu.co/index.php/investigacion_duitama/article/view/12754 DOI: https://doi.org/10.19053/20278306.v11.n2.2021.12754

Rubaceti NAB, Giraldo SR, Sepulveda MZ. Una revisión bibliográfica del Fintech y sus principales subáreas de estudio. ECONÓMICAS CUC [Internet]. 2022 [cited 2021 Dec 1];43(1). Available from: https://revistascientificas.cuc.edu.co/economicascuc/article/view/3246 DOI: https://doi.org/10.17981/econcuc.43.1.2022.Econ.4

Clavijo-Tapia FJ, Duque-Hurtado PL, Arias-Cerquera G, Tolosa-Castañeda MA. Organizational communication: a bibliometric analysis from 2005 to 2020. Clío América [Internet]. 2021 Oct 13 [cited 2021 Dec 1];15(29). Available from: https://revistas.unimagdalena.edu.co/index.php/clioamerica/article/view/4311 DOI: https://doi.org/10.21676/23897848.4311

Torres G, Robledo S, Berrío SR. Orientación al mercado: importancia, evolución y enfoques emergentes usando análisis cienciométrico. criteriolibre [Internet]. 2021 Dec 28 [cited 2022 Jan 12];19(35):326–40. Available from: https://revistas.unilibre.edu.co/index.php/criteriolibre/article/view/8371 DOI: https://doi.org/10.18041/1900-0642/criteriolibre.2021v19n35.8371

Hirsch J. An index to quantify an individual’s scientific research output. 2005; Available from: https://doi.org/10.1073/pnas.0507655102 DOI: https://doi.org/10.1073/pnas.0507655102

H. White. Journal of the American Society for Information Science and Technology. 2003; Available from: https://doi.org/10.1002/asi.10228 DOI: https://doi.org/10.1002/asi.10228

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech [Internet]. 2008 Oct 9 [cited 2022 Sep 2];2008(10):P10008. Available from: https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008/meta DOI: https://doi.org/10.1088/1742-5468/2008/10/P10008

Ohri A. R for Business Analytics [Internet]. Springer Science & Business Media; 2012. 312 p. Available from: https://play.google.com/store/books/details?id=D2Su4qomE4sC

Page L., et. al. The PageRank Citation Ranking: Bringing Order to the Web. 1998 [cited 2022 Sep 2]; Available from: http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

Ding Y., Yan E., Sugimoto C. P-Rank: An indicator measuring prestige in heterogeneous scholarly networks. Journal of the American Society for Information Science and Technology [Internet]. 2010; Available from: https://doi.org/10.1002/asi.21461 DOI: https://doi.org/10.1002/asi.21461

Yan E., Et Al. PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology [Internet]. 2009; Available from: https://doi.org/10.1002/asi.21171 DOI: https://doi.org/10.1002/asi.21171

Beesley L, Moreno Jiménez E, Gomez Eyles JL. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut [Internet]. 2010 Jun;158(6):2282–7. Available from: http://dx.doi.org/10.1016/j.envpol.2010.02.003 DOI: https://doi.org/10.1016/j.envpol.2010.02.003

Lu H, Zhang W, Yang Y, Huang X, Wang S, Qiu R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res [Internet]. 2012 Mar 1 [cited 2022 Apr 21];46(3):854–62. Available from: http://dx.doi.org/10.1016/j.watres.2011.11.058 DOI: https://doi.org/10.1016/j.watres.2011.11.058

Houben D, Evrard L, Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere [Internet]. 2013 Sep 1 [cited 2022 Apr 21];92(11):1450–7. Available from: http://dx.doi.org/10.1016/j.chemosphere.2013.03.055 DOI: https://doi.org/10.1016/j.chemosphere.2013.03.055

Hussain A EA. Use of Biochar as an Amendment for Remediation of Heavy Metal-Contaminated Soils: Prospects and Challenges. Pedosphere [Internet]. 2017 Dec 1 [cited 2022 Apr 22];27(6):991–1014. Available from: http://dx.doi.org/10.1016/S1002-0160(17)60490-9 DOI: https://doi.org/10.1016/S1002-0160(17)60490-9

J Damascene Et A. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution. Ecotoxicol Environ Saf [Internet]. 2020 Nov 1 [cited 2022 Apr 22];204:111020. Available from: http://dx.doi.org/10.1016/j.ecoenv.2020.111020 DOI: https://doi.org/10.1016/j.ecoenv.2020.111020

Moore F EA. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils. Sci Total Environ [Internet]. 2018 Mar 1 [cited 2022 Apr 22];616-617:960–9. Available from: http://dx.doi.org/10.1016/j.scitotenv.2017.10.223 DOI: https://doi.org/10.1016/j.scitotenv.2017.10.223

Norini M, Et A. Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. J Environ Manage [Internet]. 2019 Feb 15 [cited 2022 Apr 28];232:117–30. Available from: http://dx.doi.org/10.1016/j.jenvman.2018.11.021 DOI: https://doi.org/10.1016/j.jenvman.2018.11.021

Engelhard C Cheng J Lehmann. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta [Internet]. 2008 Mar 15 [cited 2022 Apr 29];72(6):1598–610. Available from: http://dx.doi.org/10.1016/j.gca.2008.01.010 DOI: https://doi.org/10.1016/j.gca.2008.01.010

Jiang J, Xu R. Application of crop straw derived biochars to Cu(II) contaminated Ultisol: Evaluating role of alkali and organic functional groups in Cu(II) immobilization. Bioresour Technol [Internet]. 2013 Apr 1 [cited 2022 Apr 29];133:537–45. Available from: http://dx.doi.org/10.1016/j.biortech.2013.01.161 DOI: https://doi.org/10.1016/j.biortech.2013.01.161

Forján R, Asensio V, Vila AR, Covelo EF. Contributions of a compost-biochar mixture to the metal sorption capacity of a mine tailing. Environ Sci Pollut Res [Internet]. 2015 Oct 3 [cited 2022 May 2];23(3):2595–602. Available from: https://link.springer.com/article/10.1007/s11356-015-5489-0 DOI: https://doi.org/10.1007/s11356-015-5489-0

Karer J, Wawra A, Zehetner F, Dunst G, Wagner M, Pavel PB, et al. Effects of Biochars and Compost Mixtures and Inorganic Additives on Immobilisation of Heavy Metals in Contaminated Soils. Water Air Soil Pollut Focus [Internet]. 2015 Sep 17 [cited 2022 May 9];226(10):1–12. Available from: https://link.springer.com/article/10.1007/s11270-015-2584-2 DOI: https://doi.org/10.1007/s11270-015-2584-2

Wang Y, Ma X, Wang J, Cheng S, Ren Q, Zhan W, et al. Effects of Mercapto-functionalized Nanosilica on Cd Stabilization and Uptake by Wheat Seedling (Triticum aestivum L.) in an Agricultural Soil. Bull Environ Contam Toxicol [Internet]. 2019 Oct 11 [cited 2022 May 9];103(6):860–4. Available from: https://link.springer.com/article/10.1007/s00128-019-02729-4 DOI: https://doi.org/10.1007/s00128-019-02729-4

Lu H. et. al. Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere [Internet]. 2015 Jan 1 [cited 2022 May 9];119:209–16. Available from: http://dx.doi.org/10.1016/j.chemosphere.2014.06.024 DOI: https://doi.org/10.1016/j.chemosphere.2014.06.024

Shang J. E al. Removal of chromium (VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar. J Environ Manage [Internet]. 2017 Jul 15 [cited 2022 May 3];197:331–7. Available from: http://dx.doi.org/10.1016/j.jenvman.2017.03.085 DOI: https://doi.org/10.1016/j.jenvman.2017.03.085

Jin H E al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresour Technol [Internet]. 2014 Oct 1 [cited 2022 May 3];169:622–9. Available from: http://dx.doi.org/10.1016/j.biortech.2014.06.103 DOI: https://doi.org/10.1016/j.biortech.2014.06.103

Alonso A. Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior. Chemosphere [Internet]. 2019 Jan 1 [cited 2022 May 3];214:743–53. Available from: http://dx.doi.org/10.1016/j.chemosphere.2018.09.091 DOI: https://doi.org/10.1016/j.chemosphere.2018.09.091

M. Stefaniuk, O. Patryk. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil. Environ Pollut [Internet]. 2016 Nov 1 [cited 2022 May 2];218:242–51. Available from: http://dx.doi.org/10.1016/j.envpol.2016.06.063 DOI: https://doi.org/10.1016/j.envpol.2016.06.063

Cao X., Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol [Internet]. 2010 Jul 1 [cited 2022 May 10];101(14):5222–8. Available from: http://dx.doi.org/10.1016/j.biortech.2010.02.052 DOI: https://doi.org/10.1016/j.biortech.2010.02.052

Bansode R. Et. Al. Adsorption of metal ions by pecan shell-based granular activated carbons. Bioresour Technol [Internet]. 2003 Sep 1 [cited 2022 May 10];89(2):115–9. Available from: http://dx.doi.org/10.1016/S0960-8524(03)00064-6 DOI: https://doi.org/10.1016/S0960-8524(03)00064-6

M.Kobya, E.Demirbas, E.Senturk, M.Ince. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol [Internet]. 2005 Sep 1 [cited 2022 May 9];96(13):1518–21. Available from: http://dx.doi.org/10.1016/j.biortech.2004.12.005 DOI: https://doi.org/10.1016/j.biortech.2004.12.005

Fuentes A. et. al. Comparative study of six different sludges by sequential speciation of heavy metals. Bioresour Technol [Internet]. 2008 Feb 1 [cited 2022 May 7];99(3):517–25. Available from: http://dx.doi.org/10.1016/j.biortech.2007.01.025 DOI: https://doi.org/10.1016/j.biortech.2007.01.025

Yuan X. et. al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour Technol [Internet]. 2011 Mar 1 [cited 2022 May 6];102(5):4104–10. Available from: http://dx.doi.org/10.1016/j.biortech.2010.12.055 DOI: https://doi.org/10.1016/j.biortech.2010.12.055

Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E. Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis [Internet]. 2013 May 1;101:72–8. Available from: https://www.sciencedirect.com/science/article/pii/S0165237013000454 DOI: https://doi.org/10.1016/j.jaap.2013.02.010

Lu H. Et. Al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J Anal Appl Pyrolysis [Internet]. 2013 Jul 1 [cited 2022 May 10];102:137–43. Available from: http://dx.doi.org/10.1016/j.jaap.2013.03.004 DOI: https://doi.org/10.1016/j.jaap.2013.03.004

Yuan H. Et. Al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J Anal Appl Pyrolysis [Internet]. 2015 Mar 1 [cited 2022 May 6];112:284–9. Available from: http://dx.doi.org/10.1016/j.jaap.2015.01.010 DOI: https://doi.org/10.1016/j.jaap.2015.01.010

Jin J. Et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J Hazard Mater [Internet]. 2016 Dec 15 [cited 2022 May 6];320:417–26. Available from: http://dx.doi.org/10.1016/j.jhazmat.2016.08.050 DOI: https://doi.org/10.1016/j.jhazmat.2016.08.050

Jin J E al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals. Bioresour Technol [Internet]. 2017 Mar 1 [cited 2022 May 3];228:218–26. Available from: http://dx.doi.org/10.1016/j.biortech.2016.12.103 DOI: https://doi.org/10.1016/j.biortech.2016.12.103

Wang X et. al. Effect of pyrolysis temperature on characteristics, chemical speciation and risk evaluation of heavy metals in biochar derived from textile dyeing sludge. Ecotoxicol Environ Saf [Internet]. 2019 Jan 30 [cited 2022 May 6];168:45–52. Available from: http://dx.doi.org/10.1016/j.ecoenv.2018.10.022 DOI: https://doi.org/10.1016/j.ecoenv.2018.10.022

Zhou Y. Et. Al. Effects of pyrolysis temperature and addition proportions of corncob on the distribution of products and potential energy recovery during the preparation of sludge activated carbon. Chemosphere [Internet]. 2019 Apr 1 [cited 2022 May 10];221:175–83. Available from: http://dx.doi.org/10.1016/j.chemosphere.2019.01.026 DOI: https://doi.org/10.1016/j.chemosphere.2019.01.026

Ambaye TG, Vaccari M, van Hullebusch ED, Amrane A, Rtimi S. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol [Internet]. 2020 Dec 26 [cited 2022 May 7];18(10):3273–94. Available from: https://link.springer.com/article/10.1007/s13762-020-03060-w DOI: https://doi.org/10.1007/s13762-020-03060-w

Xu H. et. al. Biochar Impacts Soil Microbial Community Composition and Nitrogen Cycling in an Acidic Soil Planted with Rape. 2014; Available from: https://doi.org/10.1021/es5021058 DOI: https://doi.org/10.1021/es5021058

Paz-Ferreiro J, Gascó G, Gutiérrez B, Méndez A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol Fertil Soils [Internet]. 2011 Dec 21 [cited 2022 May 7];48(5):511–7. Available from: https://link.springer.com/article/10.1007/s00374-011-0644-3 DOI: https://doi.org/10.1007/s00374-011-0644-3

XU N., TAN G., WANG H., GAI X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol [Internet]. 2016 May 1 [cited 2022 May 10];74:1–8. Available from: http://dx.doi.org/10.1016/j.ejsobi.2016.02.004 DOI: https://doi.org/10.1016/j.ejsobi.2016.02.004

Chen Z. Et. Al. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition. J Hazard Mater [Internet]. 2016 Jul 5 [cited 2022 May 10];311:20–9. Available from: http://dx.doi.org/10.1016/j.jhazmat.2016.02.069 DOI: https://doi.org/10.1016/j.jhazmat.2016.02.069

Wang N. Et. Al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environ Pollut [Internet]. 2017 Jan 1 [cited 2022 May 11];220:514–22. Available from: http://dx.doi.org/10.1016/j.envpol.2016.09.095 DOI: https://doi.org/10.1016/j.envpol.2016.09.095

Prayogo C, Jones JE, Baeyens J, Bending GD. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol Fertil Soils [Internet]. 2013 Nov 27 [cited 2022 May 11];50(4):695–702. Available from: https://link.springer.com/article/10.1007/s00374-013-0884-5 DOI: https://doi.org/10.1007/s00374-013-0884-5

Gomez J., et al. Biochar addition rate influences soil microbial abundance and activity in temperate soils. 2014; Available from: https://doi.org/10.1111/ejss.12097 DOI: https://doi.org/10.1111/ejss.12097

Li X. Et. Al. Qualitative and quantitative correlation of physicochemical characteristics and lead sorption behaviors of crop residue-derived chars. Bioresour Technol [Internet]. 2018 Dec 1 [cited 2022 May 11];270:545–53. Available from: http://dx.doi.org/10.1016/j.biortech.2018.09.078 DOI: https://doi.org/10.1016/j.biortech.2018.09.078

BASS A., BIRD M., KAY G., MUIRHEAD B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci Total Environ [Internet]. 2016 Apr 15 [cited 2022 May 11];550:459–70. Available from: http://dx.doi.org/10.1016/j.scitotenv.2016.01.143 DOI: https://doi.org/10.1016/j.scitotenv.2016.01.143