Evaluation of adhesion and corrosion wear resistance of biobased polymers derived from linseed oil deposited on Fe-Zn sheets
Main Article Content
The objective of this paper is to study adherence and corrosion wear resistance of biobased polymers derived from epoxidized linseed oil (ELO) deposited on galvanized iron sheets. The adhesion and anticorrosive properties of the pure epoxy resin (ELO) were compared with those that contained bisphenol A (BFA) and carbon black (CB), which were polymerized by oxirane ring opening catalyzed by aluminum triflate (ATf). Fourier Transform Infrared Spectroscopy (FTIR) confirmed the formation of the different biobased polymers as coatings. To evaluate the performance to the corrosion resistance each coating was tested to adhesion and accelerated weathering within a salt spray chamber. The use of BFA provided greater adhesion than pure ELO coatings. Additionally, the addition of small loads of CB improved the appearance, adhesion, and durability of the coating, thus decreasing the corrosion of the galvanized sheets. Finally, the interactions that occur at the interface between the different polymeric matrices and the substrate surface, which allow improving the corrosion resistance were analyzed.
Moura JHL, Heinen M, Da Silva, RC, Martini EM, Petzhold CL. Reinforcing anticorrosive properties of biobased organic coatings through chemical functionalization with amino and aromatic groups. Prog Org Coat. 2018 dec; 125:372–83. doi:10.1016/j.porgcoat.2018.09.021
Loto RT, Olowoyo O. Corrosion inhibition properties of the combined admixture of essential oil extracts on mild steel in the presence of SO42− anions. S Afr J Chem Eng. 2018 dec; 26:35-41 doi:10.1016/j.sajce.2018.09.002
Thanawala K, Mutneja N, Khanna AS, Singh Raman RK. Development of self-healing coatings based on linseed oil as autonomous repairing agent for corrosion resistance. Materials 2014 nov; 7(11):7324-38. https://doi.org/10.3390/ma7117324
Gharda N, Galai M, Saqalli L et al. Linseed oil as a novel eco-friendly corrosion inhibitor of carbon steel in 1 M HCl. Surf Rev Lett. 2019 feb; 26(2):1-11. doi:10.1142/S0218625X18501482
Sharma N, Sharma S. Anticorrosive coating of polymer composites: A review. Mater Today: Proc. 2020 dec; 44(6):4498-4502. doi:10.1016/j.matpr.2020.10.726
Sharmin E, Zafar F, Akram D, Alam M, Ahmad S. Recent advances in vegetable oils based environment friendly coatings: A review. Ind Crops Prod. 2015 dec; 76:215–29. doi:10.1016/j.indcrop.2015.06.022
Raja PB, Sethuraman MG. Natural products as corrosion inhibitor for metals in corrosive media - A review. Mater Lett. 2008 jan; 62(1):113-16. doi:10.1016/j.matlet.2007.04.079
Njoku DI, Cui M, Xiao H, Shang B, Li Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Sci Rep. 2017 nov; 7(15597):1-15. doi:10.1038/s41598-017-15845-0
Moradi M, Yeganeh H, Pazokifard S. Synthesis and assessment of novel anticorrosive polyurethane coatings containing an amine-functionalized nanoclay additive prepared by the cathodic electrophoretic deposition method. RSC Adv. 2016 mar; 6(33):28089-102. doi:10.1039/C5RA26609B
Sørensen PA, Kiil S, Dam-Johansen K, Weinell CE. Anticorrosive coatings: A review. J Coat Technol Res. 2009 jan; 6(4):135-76. doi:10.1007/s11998-008-9144-2
Chaudhari AB, Tatiya PD, Hedaoo RK, Kulkarni RD, Gite VV. Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings. Ind Eng Chem Res. 2013 jul; 52(30):10189-97. doi:10.1021/ie401237s
Karmakar G, Ghosh P, Sharma BK. Chemically modifying vegetable oils to prepare green lubricants. Lubricants. 2017 nov; 5(4):1-17. doi:10.3390/lubricants5040044
Lligadas G, Ronda JC, Galiá M, Cádiz V. Renewable polymeric materials from vegetable oils: A perspective. Mater Today. 2013 sep; 16(9):337-43. doi:10.1016/j.mattod.2013.08.016
Shen Y, Wu Z, Tao J, et al. Spraying preparation of eco-friendly superhydrophobic coatings with ultralow water adhesion for effective anticorrosion and antipollution. ACS Appl Mater Interfaces. 2020 may; 12(22):25484-93. doi:10.1021/acsami.0c06074
Ataei S, Khorasani SN, Neisiany RE. Biofriendly vegetable oil healing agents used for developing self-healing coatings: A review. Prog Org Coat. 2019 apr; 129:77-95. doi:10.1016/j.porgcoat.2019.01.012
Majeed AH, Hamza MS, Kareem HR. Effect of adding nanocarbon black on the mechanical properties of epoxy. Diyala J Eng Sci. 2014 mar; 07(1):94–108.
Mustata FR, Tudorachi N, Bicu I. Epoxy resins cross-linked with bisphenol a/methylenedianiline novolac resin type: Curing and thermal behavior study. Ind Eng Chem Res. 2012 jun; 51(25):8415-24. doi: 10.1021/ie202909s
Alam M, Akram D, Sharmin E, Zafar F, Ahmad S. Vegetable oil based eco-friendly coating materials: A review article. Arab J Chem. 2014 sep; 7(4):469–79. doi:10.1016/j.arabjc.2013.12.023
Zhang C, Garrison TF, Madbouly SA, Kessler MR. Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci. 2017 aug; 71:91-143. doi:10.1016/j.progpolymsci.2016.12.009
Verma C, Olasunkanmi LO, Akpan ED et al. Epoxy resins as anticorrosive polymeric materials: A review. React Funct Polym. 2020 nov; 156:1-46. doi:10.1016/j.reactfunctpolym.2020.104741
Etika KC, Liu L, Hess LA, Grunlan JC. The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon. 2009 nov; 47(13):3128–36. doi:10.1016/j.carbon.2009.07.031
Verma A, Baurai K, Sanjay MR, Siengchin S. Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polym Compos. 2020 jan; 41(1):338–49. doi:10.1002/pc.25373
Dehonor-Márquez E, Vigueras-Santiago E, Hernández-López S. Thermal study of aluminum trifluoromethyl sulfonate as effective catalyst for the polymerization of epoxidized linseed oil. Phys Chem. 2019 aug; 9(1):1-7. doi: 10.5923/j.pc.20190901.01
Williams DBG, Cullen A. Al(OTf)3-mediated epoxide ring-opening reactions: toward piperazine-derived physiologically active products. J Org Chem. 2009 dec; 74(24):9509-12. doi:10.1021/jo9020437
Dehonor-Márquez E, Nieto-Alarcón JF, Vigueras-Santiago E, Hernández-López S. Effective and fast epoxidation reaction of linseed o,il using 50 wt% hydrogen peroxyde. Am J Chem. 2018 nov; 8:99–106. doi:10.5923/j.chemistry.20180805.01
González-Martínez DA, Vigueras-Santiago E Hernández-López S. Yield and selectivity improvement in the synthesis of carbonated linseed oil by catalytic conversion of carbon dioxide. Polymer. 2021 mar; 13(6):1-16. doi:10.3390/polym13060852
López-Téllez G, Hernández-López S, Vigueras-Santiago E. Characterization of linseed oil epoxidized at different percentages. Superf y Vacío. 2009 mar; 22(1):5-10.
Hernández-López S, Vigueras-Santiago E. Acrylated-epoxidized soybean oil-based polymers and their use in the generation of electrically conductive polymer composites. In: El-Shemy H, editor. Soybean - Bio-Active Compd. IntechOpen; 2013, pp. 231-63. doi:10.5772/52992
Tsubokawa N. Functionalization of carbon black by surface grafting of polymers. Prog Polym Sci. 1992 may; 17(3):417-70. doi:10.1016/0079-6700(92)90021-P
Asemani HR, Ahmadi P, Sarabi AA, Eivaz M. Effect of zirconium conversion coating: adhesion and anti-corrosion properties of epoxy organic coating containing zinc aluminum polyphosphate (ZAPP) pigment on carbon mild steel. Prog Org Coat. 2016 may; 94:18-27. doi:10.1016/j.porgcoat.2016.01.015
Deyab MA, Awadallah AE. Advanced anticorrosive coatings based on epoxy/functionalized multiwall carbon nanotubes composites. Prog Org Coat. 2020 feb; 139:1-5 https://doi.org/10.1016/j.porgcoat.2019.105423
Mofidabadi AH, Bahlakeh G, Ramezanzadeh B. Explorations of the adhesion and anti-corrosion properties of the epoxy coating on the carbon steel surface modified by Eu2O3 nanostructured film. J Mol Liq. 2020; 1-14. doi:10.1016/j.molliq.2020.113658
Kurbanova R, Okudan A, Mirzaoğlu R, et al. Effects of the functional groups of polystyrene on its adhesion improvement and corrosion resistance. J. Adhes. Sci. Technol. 1998 apr; 12(9):947-55. doi:10.1163/156856198X00560
Zhang W, Blackburn RS, Dehghani-Sanij AA. Carbon black reinforced epoxy resin nanocomposites as bending sensors. J Compos Mater. 2009 feb; 43(4):367-76. doi:10.1177/0021998308099308
Gantayat S, Rout D, Swain SK. Carbon nanomaterial–reinforced epoxy composites: A review. Polym-Plast Technol Eng. 2018 apr; 57(1): 1-16. doi:10.1080/03602559.2017.1298802
Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B, Rostami M. Mild steel surface eco-friendly treatment by neodymium-based nanofilm for fusion bonded epoxy coating anti-corrosion/adhesion properties enhancement in simulated seawater. J Ind Eng Chem. 2019 apr; 72:474-90. doi:10.1016/j.jiec.2019.01.003
Gao X, Yan R, Lv Y, Ma H, Ma H. In situ pretreatment and self-healing smart anti-corrosion coating prepared through eco-friendly water-base epoxy resin combined with non-toxic chelating agents decorated biomass porous carbon. J Clean Prod. 2020 sep; 266:1-13. doi:10.1016/j.jclepro.2020.121920
Liu B, Fang ZG, Wang HB, Wang T. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment. Prog Org Coat. 2013 dec; 76(12):1814–18. doi:10.1016/j.porgcoat.2013.05.022
Zhang C, Huang KC, Wang H, Zhou Q. Anti-corrosion non-isocyanate polyurethane polysiloxane organic/inorganic hybrid coatings. Prog Org Coat. 2020 nov; 148:1-8. doi:10.1016/j.porgcoat.2020.105855
Alagi P, Ghorpade R, Jang J, et al. Controlled hydroxyl functionality of soybean oil-based polyols for polyurethane coatings with improved anticorrosion properties. Macromol Res. 2018; 26:696-703. doi:10.1007/s13233-018-6104-2
Pan L, Ding W, Ma W, et al. Galvanic corrosion protection and durability of polyaniline-reinforced epoxy adhesive for bond-riveted joints in AA5083/Cf/epoxy laminates. Mater Des. 2018 dec; 160:1106–16. doi:10.1016/j.matdes.2018.10.034
Alagi P, Ghorpade R, Jang J, et al. Functional soybean oil-based polyols as sustainable feedstocks for polyurethane coatings. Ind
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).