Contenido principal del artículo

El objetivo de este trabajo es estudiar la adherencia y la resistencia al desgaste por corrosión de polímeros  derivados del aceite de linaza epoxidado (ELO), depositado sobre láminas de hierro galvanizado. Se compararon las propiedades de adhesión y anticorrosivas de la resina epoxi pura (ELO) con aquellas  que contenían bisfenol A (BFA) y negro de humo (CB), todas polimerizadas por apertura de anillo de oxirano catalizada por triflato de aluminio (ATf). La espectroscopia infrarroja por transformada de Fourier (FTIR) confirmó la formación de los diferentes polímeros de base biológica como recubrimientos. Para determinar la resistencia a la corrosión, se evaluó la adhesión de cada revestimiento, así como el  intemperismo acelerado dentro de una cámara de niebla salina. El uso de BFA proporcionó una mayor adherencia que los recubrimientos ELO puros. Además, la adición de pequeñas cargas de CB mejoró la apariencia, adherencia y durabilidad del revestimiento, disminuyendo así la corrosión de las láminas galvanizadas. Finalmente, se analizaron las interacciones que ocurren en la interfaz entre las diferentes matrices poliméricas y la superficie del sustrato, que permitieron mejorar la resistencia a la corrosión.

Jorge Tello González, Facultad de Química de la Universidad Autónoma del Estado de México

Es Ingeniero Mecánico del Instituto Tecnológico de Morelia, México en 2003. Se graduó de Maestro en Ciencia de Materiales en la Universidad Autónoma del Estado de México en 2017, y actualmente estudia en el Programa de Doctorado en Ciencia de Materiales de la misma Universidad

Dr. Gonzalo, Facultad de Química de la Universidad Autónoma del Estado de México

El Prof. Gonzalo Martínez Barrera es egresado de la Universidad Nacional Autónoma de México (UNAM); Tuvo una beca postdoctoral en la Universidad del Norte de Texas y un año sabático en la Universidad de Oviedo. Realizó estancias de investigación en diferentes países (Francia, Portugal, Estados Unidos, Canadá, Colombia). Entre los trabajos publicados, tiene más de 100 artículos científicos, 4 libros y 25 capítulos de libros. Es revisor habitual de varias revistas, miembro de consejos editoriales y editor principal de números especiales. Hace 25 años que es miembro del Sistema Nacional de Investigaciones de México (SNI), coordinado por el Consejo Nacional de Ciencia y Tecnología de México (CONACYT). Había realizado varios proyectos de investigación apoyados por gobiernos de México (CONACYT, UAEM, COSNET, DGIT) y de Estados Unidos. Desarrolla su investigación en el Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Química de la Universidad Autónoma del Estado de México (UAEM); ha sido asesor de estudiantes (Licenciatura 37; Maestría 20 en Ciencias; Doctorado 21). Da clases en programas de licenciatura y posgrado, así como también enseña en industrias locales. Ahora desarrolla investigaciones en composites y materiales de reciclaje, así como sobre los efectos de la radiación gamma en sus propiedades fisicoquímicas; con aplicaciones en materiales de construcción.

David, Facultad de Química de la Universidad Autónoma del Estado de México

Es estudiante de doctorado en el programa de posgrado en Ciencia de Materiales, Facultad de Química, Universidad Autónoma del Estado de México (UAEM), México. Es Ingeniero Químico y Mestro en Ciencias Químicas por la UAEM. Su investigación se centra en la síntesis y desarrollo de polímeros, composites y coacervados a partir de fuentes naturales, mediante el estudio de propiedades fisicoquímicas con aplicaciones en las industrias de recubrimientos, automotriz, alimentaria y farmacéutica.

Susana Hdz, Facultad de Química de la Universidad Autónoma del Estado de México

Susana Hernández López, se doctoró en Ciencias por la Universidad Nacional Autónoma de México (UNAM), en 2003. Trabaja en la Facultad de Química de la Universidad Autónoma de México como profesora de tiempo completo, desde 2002 donde participa activamente en investigación y docencia en química. Sus áreas de investigación incluyen la funcionalización química de moléculas de recursos renovables para la síntesis de biopolímeros y compuestos; su caracterización y estudio de sus propiedades. Es miembro del Sistema Nacional de Investigadores del Consejo Nacional de Ciencia y Tecnología de México desde 2004.

1.
Tello González J, Martínez Barrera G, González Martínez DA, Hernández López S, Vigueras Santiago E. Evaluación de la adherencia y de la Resistencia al desgaste por corrosion de polímeros biobasados de aceite de linaza depositados en placas de Fe-Zn. inycomp [Internet]. 30 de diciembre de 2022 [citado 27 de enero de 2023];25(1). Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11832

Moura JHL, Heinen M, Da Silva, RC, Martini EM, Petzhold CL. Reinforcing anticorrosive properties of biobased organic coatings through chemical functionalization with amino and aromatic groups. Prog Org Coat. 2018 dec; 125:372–83. doi:10.1016/j.porgcoat.2018.09.021

Loto RT, Olowoyo O. Corrosion inhibition properties of the combined admixture of essential oil extracts on mild steel in the presence of SO42− anions. S Afr J Chem Eng. 2018 dec; 26:35-41 doi:10.1016/j.sajce.2018.09.002

Thanawala K, Mutneja N, Khanna AS, Singh Raman RK. Development of self-healing coatings based on linseed oil as autonomous repairing agent for corrosion resistance. Materials 2014 nov; 7(11):7324-38. https://doi.org/10.3390/ma7117324

Gharda N, Galai M, Saqalli L et al. Linseed oil as a novel eco-friendly corrosion inhibitor of carbon steel in 1 M HCl. Surf Rev Lett. 2019 feb; 26(2):1-11. doi:10.1142/S0218625X18501482

Sharma N, Sharma S. Anticorrosive coating of polymer composites: A review. Mater Today: Proc. 2020 dec; 44(6):4498-4502. doi:10.1016/j.matpr.2020.10.726

Sharmin E, Zafar F, Akram D, Alam M, Ahmad S. Recent advances in vegetable oils based environment friendly coatings: A review. Ind Crops Prod. 2015 dec; 76:215–29. doi:10.1016/j.indcrop.2015.06.022

Raja PB, Sethuraman MG. Natural products as corrosion inhibitor for metals in corrosive media - A review. Mater Lett. 2008 jan; 62(1):113-16. doi:10.1016/j.matlet.2007.04.079

Njoku DI, Cui M, Xiao H, Shang B, Li Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Sci Rep. 2017 nov; 7(15597):1-15. doi:10.1038/s41598-017-15845-0

Moradi M, Yeganeh H, Pazokifard S. Synthesis and assessment of novel anticorrosive polyurethane coatings containing an amine-functionalized nanoclay additive prepared by the cathodic electrophoretic deposition method. RSC Adv. 2016 mar; 6(33):28089-102. doi:10.1039/C5RA26609B

Sørensen PA, Kiil S, Dam-Johansen K, Weinell CE. Anticorrosive coatings: A review. J Coat Technol Res. 2009 jan; 6(4):135-76. doi:10.1007/s11998-008-9144-2

Chaudhari AB, Tatiya PD, Hedaoo RK, Kulkarni RD, Gite VV. Polyurethane prepared from neem oil polyesteramides for self-healing anticorrosive coatings. Ind Eng Chem Res. 2013 jul; 52(30):10189-97. doi:10.1021/ie401237s

Karmakar G, Ghosh P, Sharma BK. Chemically modifying vegetable oils to prepare green lubricants. Lubricants. 2017 nov; 5(4):1-17. doi:10.3390/lubricants5040044

Lligadas G, Ronda JC, Galiá M, Cádiz V. Renewable polymeric materials from vegetable oils: A perspective. Mater Today. 2013 sep; 16(9):337-43. doi:10.1016/j.mattod.2013.08.016

Shen Y, Wu Z, Tao J, et al. Spraying preparation of eco-friendly superhydrophobic coatings with ultralow water adhesion for effective anticorrosion and antipollution. ACS Appl Mater Interfaces. 2020 may; 12(22):25484-93. doi:10.1021/acsami.0c06074

Ataei S, Khorasani SN, Neisiany RE. Biofriendly vegetable oil healing agents used for developing self-healing coatings: A review. Prog Org Coat. 2019 apr; 129:77-95. doi:10.1016/j.porgcoat.2019.01.012

Majeed AH, Hamza MS, Kareem HR. Effect of adding nanocarbon black on the mechanical properties of epoxy. Diyala J Eng Sci. 2014 mar; 07(1):94–108.

Mustata FR, Tudorachi N, Bicu I. Epoxy resins cross-linked with bisphenol a/methylenedianiline novolac resin type: Curing and thermal behavior study. Ind Eng Chem Res. 2012 jun; 51(25):8415-24. doi: 10.1021/ie202909s

Alam M, Akram D, Sharmin E, Zafar F, Ahmad S. Vegetable oil based eco-friendly coating materials: A review article. Arab J Chem. 2014 sep; 7(4):469–79. doi:10.1016/j.arabjc.2013.12.023

Zhang C, Garrison TF, Madbouly SA, Kessler MR. Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci. 2017 aug; 71:91-143. doi:10.1016/j.progpolymsci.2016.12.009

Verma C, Olasunkanmi LO, Akpan ED et al. Epoxy resins as anticorrosive polymeric materials: A review. React Funct Polym. 2020 nov; 156:1-46. doi:10.1016/j.reactfunctpolym.2020.104741

Etika KC, Liu L, Hess LA, Grunlan JC. The influence of synergistic stabilization of carbon black and clay on the electrical and mechanical properties of epoxy composites. Carbon. 2009 nov; 47(13):3128–36. doi:10.1016/j.carbon.2009.07.031

Verma A, Baurai K, Sanjay MR, Siengchin S. Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application. Polym Compos. 2020 jan; 41(1):338–49. doi:10.1002/pc.25373

Dehonor-Márquez E, Vigueras-Santiago E, Hernández-López S. Thermal study of aluminum trifluoromethyl sulfonate as effective catalyst for the polymerization of epoxidized linseed oil. Phys Chem. 2019 aug; 9(1):1-7. doi: 10.5923/j.pc.20190901.01

Williams DBG, Cullen A. Al(OTf)3-mediated epoxide ring-opening reactions: toward piperazine-derived physiologically active products. J Org Chem. 2009 dec; 74(24):9509-12. doi:10.1021/jo9020437

Dehonor-Márquez E, Nieto-Alarcón JF, Vigueras-Santiago E, Hernández-López S. Effective and fast epoxidation reaction of linseed o,il using 50 wt% hydrogen peroxyde. Am J Chem. 2018 nov; 8:99–106. doi:10.5923/j.chemistry.20180805.01

González-Martínez DA, Vigueras-Santiago E Hernández-López S. Yield and selectivity improvement in the synthesis of carbonated linseed oil by catalytic conversion of carbon dioxide. Polymer. 2021 mar; 13(6):1-16. doi:10.3390/polym13060852

López-Téllez G, Hernández-López S, Vigueras-Santiago E. Characterization of linseed oil epoxidized at different percentages. Superf y Vacío. 2009 mar; 22(1):5-10.

Hernández-López S, Vigueras-Santiago E. Acrylated-epoxidized soybean oil-based polymers and their use in the generation of electrically conductive polymer composites. In: El-Shemy H, editor. Soybean - Bio-Active Compd. IntechOpen; 2013, pp. 231-63. doi:10.5772/52992

Tsubokawa N. Functionalization of carbon black by surface grafting of polymers. Prog Polym Sci. 1992 may; 17(3):417-70. doi:10.1016/0079-6700(92)90021-P

Asemani HR, Ahmadi P, Sarabi AA, Eivaz M. Effect of zirconium conversion coating: adhesion and anti-corrosion properties of epoxy organic coating containing zinc aluminum polyphosphate (ZAPP) pigment on carbon mild steel. Prog Org Coat. 2016 may; 94:18-27. doi:10.1016/j.porgcoat.2016.01.015

Deyab MA, Awadallah AE. Advanced anticorrosive coatings based on epoxy/functionalized multiwall carbon nanotubes composites. Prog Org Coat. 2020 feb; 139:1-5 https://doi.org/10.1016/j.porgcoat.2019.105423

Mofidabadi AH, Bahlakeh G, Ramezanzadeh B. Explorations of the adhesion and anti-corrosion properties of the epoxy coating on the carbon steel surface modified by Eu2O3 nanostructured film. J Mol Liq. 2020; 1-14. doi:10.1016/j.molliq.2020.113658

Kurbanova R, Okudan A, Mirzaoğlu R, et al. Effects of the functional groups of polystyrene on its adhesion improvement and corrosion resistance. J. Adhes. Sci. Technol. 1998 apr; 12(9):947-55. doi:10.1163/156856198X00560

Zhang W, Blackburn RS, Dehghani-Sanij AA. Carbon black reinforced epoxy resin nanocomposites as bending sensors. J Compos Mater. 2009 feb; 43(4):367-76. doi:10.1177/0021998308099308

Gantayat S, Rout D, Swain SK. Carbon nanomaterial–reinforced epoxy composites: A review. Polym-Plast Technol Eng. 2018 apr; 57(1): 1-16. doi:10.1080/03602559.2017.1298802

Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B, Rostami M. Mild steel surface eco-friendly treatment by neodymium-based nanofilm for fusion bonded epoxy coating anti-corrosion/adhesion properties enhancement in simulated seawater. J Ind Eng Chem. 2019 apr; 72:474-90. doi:10.1016/j.jiec.2019.01.003

Gao X, Yan R, Lv Y, Ma H, Ma H. In situ pretreatment and self-healing smart anti-corrosion coating prepared through eco-friendly water-base epoxy resin combined with non-toxic chelating agents decorated biomass porous carbon. J Clean Prod. 2020 sep; 266:1-13. doi:10.1016/j.jclepro.2020.121920

Liu B, Fang ZG, Wang HB, Wang T. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment. Prog Org Coat. 2013 dec; 76(12):1814–18. doi:10.1016/j.porgcoat.2013.05.022

Zhang C, Huang KC, Wang H, Zhou Q. Anti-corrosion non-isocyanate polyurethane polysiloxane organic/inorganic hybrid coatings. Prog Org Coat. 2020 nov; 148:1-8. doi:10.1016/j.porgcoat.2020.105855

Alagi P, Ghorpade R, Jang J, et al. Controlled hydroxyl functionality of soybean oil-based polyols for polyurethane coatings with improved anticorrosion properties. Macromol Res. 2018; 26:696-703. doi:10.1007/s13233-018-6104-2

Pan L, Ding W, Ma W, et al. Galvanic corrosion protection and durability of polyaniline-reinforced epoxy adhesive for bond-riveted joints in AA5083/Cf/epoxy laminates. Mater Des. 2018 dec; 160:1106–16. doi:10.1016/j.matdes.2018.10.034

Alagi P, Ghorpade R, Jang J, et al. Functional soybean oil-based polyols as sustainable feedstocks for polyurethane coatings. Ind