Contenido principal del artículo

georreferenciada real. Se parte de la premisa que: una nueva urbanización requiere ser dotada de energía eléctrica, con buena calidad de energía, al mínimo costo, para lo cual se usan metodologías de optimización. La ubicación de los trasformadores es determinada mediante un proceso de optimización, donde las principales restricciones son capacidad y cobertura, se propone 36 sitios posibles para la ubicación de los trasformadores, el modelo minimiza mediante su función objetivo encuentra 6 sitios óptimos, los cálculos se ejecutan en el entorno de LPSolve. La conexión de la red de media tensión de los transformadores es determinada a través de un método de optimización heurístico, basada en la teoría de grafos, con el cálculo del árbol de mínima expansión, estos algoritmos son implementados en Matlab para determinar la conexión de todos los transformadores al mínimo costo. La topología encontrada con los modelos de optimización es migrada al entorno de CYMEDIST para la simulación y análisis del comportamiento eléctrico. Se evalúa los parámetros característicos de las redes eléctricas de distribución, siendo estos: el desbalance de corriente y caídas de tensión. Finalmente se valida el modelo planteado, comparando los parámetros eléctricos obtenidos con los parámetros exigidos por las normas eléctricas de distribución.

1.
Amaya Vásquez L, Campaña Molina M Ángel. Diseño Óptimo de Redes Eléctricas de Distribución Mediante Modelos de Optimización . inycomp [Internet]. 30 de diciembre de 2022 [citado 27 de enero de 2023];25(1):18. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11572

A. Valenzuela, I. Montalvo, and E. Inga, “A decision-making tool for electric distribution network planning based on heuristics and georeferenced data,” Energies, vol. 12, no. 21, 2019, doi: 10.3390/en12214065.

R. Li, W. Wang, Z. Chen, J. Jiang, and W. Zhang, “A review of optimal planning active distribution system: Models, methods, and future researches,” Energies, vol. 10, no. 11, pp. 1–27, 2017, doi: 10.3390/en10111715.

U. Raut and S. Mishra, “Power distribution network reconfiguration for loss minimization using a new graph theory based genetic algorithm,” 2017 IEEE Calcutta Conf. CALCON 2017 - Proc., vol. 2018-January, pp. 1–5, 2018, doi: 10.1109/CALCON.2017.8280684.

R. Cadenovic, D. Jakus, P. Sarajcev, and J. Vasilj, “Optimal distribution network reconfiguration through integration of cycle-break and genetic algorithms,” Energies, vol. 11, no. 5, 2018, doi: 10.3390/en11051278.

M. Z. Vahid, Z. M. Ali, E. S. Najmi, A. Ahmadi, F. H. Gandoman, and S. H. E. A. Aleem, “Optimal Allocation and Planning of Distributed Power Generation Resources in a Smart Distribution Network Using the Manta Ray Foraging Optimization Algorithm,” vol. 14, no. 16, pp. 1–25, 2021, doi: 10.3390/en14164856.

F. G. K. Guarda, G. C. Junior, and C. D. L. Da Silva, “Fault current limiter placement to reduce recloser-fuse miscoordination in electric distribution systems with distributed generation using multiobjective particle swarm optimization,” IEEE Lat. Am. Trans., vol. 16, no. 7, pp. 1914–1920, 2018, doi: 10.1109/TLA.2018.8447357.

F. Girbau-Llistuella, F. Díaz-González, A. Sumper, R. Gallart-Fernández, and D. Heredero-Peris, “Smart grid architecture for rural distribution networks: Application to a Spanish Pilot Network,” Energies, vol. 11, no. 4, pp. 9–12, 2018, doi: 10.3390/en11040844.

U. P. Müller et al., “Integrated techno-economic power system planning of transmission and distribution grids,” Energies, vol. 12, no. 11, pp. 1–30, 2019, doi: 10.3390/en12112091.

F. Villacres and E. Inga, “Planeación y dimensionamiento de redes eléctricas de distribución soterrada mediante un método metaheurístico,” Ing. y Cienc., vol. 15, no. 30, pp. 141–166, 2019, doi: 10.17230/ingciencia.15.30.7.

K. Lin, X. Jing, Z. Hengjun, and W. Beibei, “Planning Method for Distribution Networks Based on Load Growth Characteristics of the Industry,” CICED, pp. 10-13, 2016.

J. Fletcher, T. Fernando, H. Iu, M. Reynolds, and S. Fani, “A case study on optimizing an electrical distribution network using a genetic algorithm,” 2015 IEEE 130 ITECKNE Vol. 15 Número 2 • ISSN 1692-1798 • ISSN Digital 2339 - 3483 • diciembre 2018 • 121 - 130 24th Int. Symp. Ind. Electron, pp. 20-25, 2015.

G. A. Jiménez-Estevez, L. S. Vargas, and R. Palma-Behnke, “An evolutionary approach for the greenfield planning problem in distribution networks,” IEEE Int. Conf. Neural Networks - Conf. Proc., pp. 1744-1749, 2007.

V. Dumbrava, P. Ulmeanu, P. Duquenne, C. Lazaroiu, and M. Scutariu, “Expansion planning of distribution networks by heuristic algorithms,” Proc. Univ. Power Eng. Conf., 2010.

E. G. Carrano, F. G. Guimarães, R. H. C. Takahashi, O. M. Neto, and F. Campelo, “Electric distribution network expansion under load-evolution uncertainty using an immune system inspired algorithm,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 851-861, 2007.

D. Deka, M. Chertkov, and S. Backhaus, “Structure Learning in Power Distribution Networks,” IEEE Trans. Control Netw. Syst., vol. 5870, no. c, pp. 1-1, 2017.

R. M. Capelini et al., “Methodology for Fast Location in Overhead Distribution Networks by Application of Temporary Georeferenced Fault Indicators,” 2016 IEEE Int. Conf. High Volt. Eng. Appl., pp. 6-9, 2016.

J. F. Gómez et al., “Ant colony system algorithm for the planning of primary distribution circuits,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 996-1004, 2004.

K. E. Antoniadou-Plytaria, N. C. Koutsoukis, E. S. Sergaki, and P. S. Georgilakis, “Multiyear power distribution planning considering voltage regulator placement,” IET Conf. Publ., vol. 2016, no. CP711, pp. 1-6, 2016.

A. Samui, S. Singh, T. Ghose, and S. R. Samantaray, “A Direct Approach to Optimal Feeder Routing for Radial Distribution System,” IEEE Trans. Power Deliv., vol. 27, no. 1, pp. 253-260, 2012.

M. Campaña, E. Inga, and R. Hincapié, “Optimal placement of universal data aggregation points for smart electric metering based on hybrid wireless,” CEUR Workshop Proc., vol. 1950, pp. 6-9, 2017.

R. Wang et al., “A Graph Theory Based Energy Routing Algorithm in Energy Local Area Network,” IEEE Trans. Ind. INFORMATICS, vol. 13, no. 6, pp. 3275-3285, 2017.

Y. Chen, S. Wang, J. Yu, W. Li, X. Shi, and W. Yang, “Optimal Weighted Voronoi Diagram Method of Distribution Network Planning Considering City Planning Coordination Factors,” 2017 4th Int. Conf. Syst. Informatics, no. Icsai, pp. 335-340, 2017.

H. Chunguang et al., “Distribution network island separation with distributed generation (DG) based on dynamic planning,” Proc. 2017 IEEE 2nd Adv. Inf. Technol. Electron. Autom. Control Conf. IAEAC 2017, pp. 1767-1771, 2017.

J. Lichtinghagen, M. Sieberichs, A. Moser, and A. Kübler, “Medium voltage network planning considering the current network and geographical restrictions,” 2017 6th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, ICCEP 2017, pp. 689-693, 2017.

E. Díaz-Dorado, J. Cidrás, and E. Míguez, “Application of evolutionary algorithms for the planning of urban distribution networks of medium voltage,” IEEE Trans. Power Syst., vol. 17, no. 3, pp. 879-884, 2002.

A. Peralta, E. Inga, and R. Hincapié, “Optimal Scalability of FiWi Networks Based on Multistage Stochastic Programming and Policies,” J. Opt. Commun. Netw., vol. 9, no. 12, p. 1172, 2017.

E. Inga, S. Céspedes, R. Hincapié, and A. Cárdenas, “Scalable Route Map for Advanced Metering Infrastructure Based on Optimal Routing of Wireless Heterogeneous Networks,” IEEE Wirel. Commun., vol. 24, no. April, pp. 1-8, 2017.

J. Naor, D. Panigrahi, and M. Singh, “Online node-weighted Steiner tree and related problems,” Proc. - Annu. IEEE Symp. Found. Comput. Sci. FOCS, pp. 210–219, 2011.

X. Han, J. Liu, D. Liu, Q. Liao, J. Hu, and Y. Yang, “Distribution network planning study with distributed generation based on Steiner tree model,” 2014 IEEE PES Asia-Pacific Power Energy Eng. Conf., vol. 1, pp. 1-5, 2014.

L. P. Zhang, Z. X. Yang, Q. Y. He, and D. M. Cai, “Immune algorithm for minimal Steiner tree problems,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 2017, Decem, pp. 110-115, 2018.

C. Wang, H. Liang, X. Geng, and M. Zhu, “Multi-sensor fusion method using kalman filter to improve localization accuracy based on android smart phone,” 2014 IEEE Int. Conf. Veh. Electron. Safety, ICVES 2014, pp. 180-184, 2015.

V. F. Martins and C. L. T. Borges, “Active Distribution Network Integrated Planning Incorporating Distributed Generation and Load Response Uncertainties,” IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2164-2172, 2011.