Contenido principal del artículo

El presente artículo es un estudio del estado del arte, donde se analiza las ventajas y desventajas de las diferentes técnicas clásicas de procesamiento digital de señales usadas para identificar frecuencias armónicas que distorsiona las formas de onda de voltaje y corriente de una red eléctrica. Tomando como referencia las técnicas clásicas que determinan la distorsión armónica de una señal eléctrica. Se propone una alternativa para la detección de frecuencias armónicas en una forma de onda eléctrica, basada en algoritmos de sensado comprimido; esta técnica extrae una muestra eficiente y reducida de la señal en estudio, dicha muestra es transformada al dominio de la frecuencia mediante una base de transformación que, para el presente caso de estudio es la transformada discreta del coseno (DCT). La señal reducida en el dominio de la frecuencia es sometida a un proceso de optimización no lineal, el cual clasifica los coeficientes, extrae los más representativos y convierte en cero a los menos representativos, es aquí donde salen a relucir de una forma clara y precisa las frecuencias armónicas, inmersas en la forma de onda eléctrica, con las cuales se calcula la distorsión armónica (THD). Este artículo muestra un ejemplo de la técnica de sensado comprimido, para la detección de frecuencias armónicas en una señal sinusoidal teórica la cual está contaminada por armónicos de tercero y quinto orden, se extrae el vector de coeficientes optimizado y se identifica las frecuencias armónicas.

1.
Amaya Vásquez L, Inga-Ortega E. Localización de Distorsiones Armónicas en Sistemas Eléctricos usando Sensado Comprimido. inycomp [Internet]. 29 de diciembre de 2021 [citado 7 de diciembre de 2022];24(1). Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/11037

(1) Mishra M. Power quality disturbance detection and classification using signal processing and soft computing techniques: A comprehensive review. Int Trans Electr Energy Syst. 2019;29(8):1–42. https://doi.org/10.1002/2050-7038.12008.

(2) Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):1289–306. https://doi.org/10.1109/TIT.2006.871582.

(3) Duarte MF, Baraniuk RG. Spectral compressive sensing. Appl Comput Harmon Anal 2013;35(1):111–29. http://dx.doi.org/10.1016/j.acha.2012.08.003.

(4) Kahane JP. Compressed sensing from a harmonic analysis point of view. Anal Math. 2016;42(1):19–29. https://doi.org/10.1007/s10476-016-0102-4.

(5) Baraniuk RG, Goldstein T, Sankaranarayanan AC, Studer C, Veeraraghavan A, Wakin MB. Compressive video sensing: Algorithms, architectures, and applications. IEEE Signal Process Mag. 2017;34(1):52–66. https://doi.org/10.1109/MSP.2016.2602099.

(6) Baraniuk RG. Compressive sensing. Handb Math Methods Imaging Vol 1, Second Ed. 2015;24(4):118–21. https://doi.org/10.1109/MSP.2007.4286571.

(7) Palczynska B, Masnicki R, Mindykowski J. Compressive sensing approach to harmonics detection in the ship electrical network. Sensors (Switzerland). 2020;20(9):1–18. https://doi.org/10.3390/s20092744.

(8) Maechler P, Studer C, Bellasi DE, Maleki A, Burg A, Felber N, et al. VLSI design of approximate message passing for signal restoration and compressive sensing. IEEE J Emerg Sel Top Circuits Syst. 2012;2(3):579–90. https://doi.org/10.1109/JETCAS.2012.2214636.

(9) Tobias S, Everson HT. Trends in Signal Processing Education. SPOTLIGHT. 2012;29(1):180–2. https://doi.org/10.1109/MSP.2011.943132.

(10) Baraniuk RG, Candes E, Nowak R, Vetterli M. Compressive sampling. IEEE Signal Process Mag. 2008;25(2):12–3. https://doi.org/10.1109/MSP.2008.915557.

(11) Baraniuk RG, Candes E, Elad M, Ma Y. Applications of sparse representation and compressive sensing. Proc IEEE. 2010;98(6):906–9. https://doi.org/10.1109/JPROC.2010.2047424.

(12) Granados-Lieberman D, Romero-Troncoso RJ, Osornio-Rios RA, Garcia-Perez A, Cabal-Yepez E. Techniques and methodologies for power quality analysis and disturbances classification in power systems: A review. IET Gener Transm Distrib. 2011;5(4):519–29. https://doi.org/10.1049/iet-gtd.2010.0466.

(13) Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process. 2006;54(11):4311–22. https://doi.org/10.1109/TSP.2006.881199.

(14) Mukherjee N, Chattopadhyaya A, Chattopadhyay S, Sengupta S. Discrete-Wavelet-Transform and Stockwell-Transform-Based Statistical Parameters Estimation for Fault Analysis in Grid-Connected Wind Power System. IEEE Syst J. 2020;14(3):4320–8. https://doi.org/10.1109/JSYST.2020.2984132.

(15) Zhao S, Wang C, Bian X. Research on harmonic detection based on wavelet threshold and FFT algorithm. Syst Sci Control Eng. 2018;6(3):339–45. https://doi.org/10.1080/21642583.2018.1558420.

(16) Jia K, Feng T, Zhao Q, Wang C, Bi T. High frequency transient sparse measurement-based fault location for complex DC distribution networks. IEEE Trans Smart Grid. 2020;11(1):312–22. https://ieeexplore.ieee.org/document/8731742

(17) Wang F, Li R, Wang Z, Zhang J. Compressed Blind Signal Reconstruction Model and Algorithm. Circuits, Syst Signal Process. 2016;35:3192–219. https://doi.org/10.1007/s00034-015-0189-z.

(18) Mercorelli P. Denoising and harmonic detection using nonorthogonal wavelet packets in industrial applications. J Syst Sci Complex. 2007;20:325–43. https://doi.org/10.1007/s11424-007-9028-z.

(19) Shao C, Li H. Identifying Single-Event Transient Location Based on Compressed Sensing. IEEE Trans Very Large Scale Integr Syst. 2018;26(4):768–77. https://doi.org/10.1109/TVLSI.2017.2778750.

(20) Duarte MF, Baraniuk RG. Kronecker compressive sensing. IEEE Trans Image Process. 2012;21(2):494–504. https://doi.org/10.1109/TIP.2011.2165289.

(21) Metzler CA, Maleki A, Baraniuk RG. From Denoising to Compressed Sensing. IEEE Trans Inf Theory. 2016;62(9):5117–44. https://doi.org/10.1109/TIT.2016.2556683.

(22) Gołowicz D, Kasprzak P, Kazimierczuk K. Enhancing compression level for more efficient compressed sensing and other lessons from NMR spectroscopy. Sensors (Switzerland). 2020;20(5):1–19. https://doi.org/10.3390/s20051325.

(23) Xiao J, Hu F, Shao Q, Li S. A low-complexity compressed sensing reconstruction method for heart signal biometric recognition. Sensors (Switzerland). 2019;19(23):5330. https://doi.org/10.3390/s19235330.

(24) Joshi P, Jain SK. An improved active power direction method for harmonic source identification. Trans Inst Meas Control. 2020;42(13):2569–77. https://doi.org/10.1177%2F0142331220932638.

(25) Candes EJ, Wakin MB. An Introduction To Compressive Sampling. IEEE Signal Process Mag. 2008;25(2):21–30. https://doi.org/10.1109/MSP.2007.914731.

(26) Ahmed N, Natarajan T, Rao KR. Discrete cosine transform. IEEE Transactions on Computers. 1974;C-23(1):90–93. https://doi.org/10.1109/T-C.1974.223784.

(27) Hegde C, Baraniuk RG. Signal recovery on incoherent manifolds. IEEE Trans Inf Theory. 2012;58(12):7204–14. https://doi.org/10.1109/ISIT.2012.6283066.

(28) Su T, Yang M, Jin T, Flesch RCC. Power harmonic and interharmonic detection method in renewable power based on Nuttall double-window all-phase FFT algorithm. IET Renew Power Gener. 2018;12(8):953–61. https://doi.org/10.1049/IET-RPG.2017.0115.

(29) Kerdjidj O, Ramzan N, Ghanem K, Amira A, Chouireb F. Fall detection and human activity classification using wearable sensors and compressed sensing. J Ambient Intell Humaniz Comput. 2020;11:349–61. http://dx.doi.org/10.1007/s12652-019-01214-4.

(30) Huang K, Xiang Z, Deng W, Tan X, Yang C. Reweighted Compressed Sensing-Based Smart Grids Topology Reconstruction with Application to Identification of Power Line Outage. IEEE Syst J. 2020;14(3):4329–39. https://doi.org/10.1109/JSYST.2019.2958869.

(31) Carta D, Muscas C, Pegoraro PA, Sulis S. Identification and Estimation of Harmonic Sources Based on Compressive Sensing. IEEE Trans Instrum Meas. 2019;68(1):95–104. https://doi.org/10.1109/TIM.2018.2838738.

(32) Jandan F, Khokhar S, Shaha SAA, Abbasi F. Recognition and classification of power quality disturbances by DWT-MRA and SVM classifier. Int J Adv Comput Sci Appl. 2019;10(3):368–77. https://dx.doi.org/10.14569/IJACSA.2019.0100348.

(33) Solis-Munoz FJ, Osornio-Rios RA, Romero-Troncoso RJ, Jaen-Cuellar AY. Differential evolution implementation for Power Quality Disturbances monitoring using OpenCL. Adv Electr Comput Eng. 2019;19(2):13–22. http://dx.doi.org/10.4316/AECE.2019.02002.

(34) Karafotis PA, Evangelopoulos VA, Georgilakis PS. Evaluation of harmonic contribution to unbalance in power systems under non-stationary conditions using wavelet packet transform. Electr Power Syst Res. 2020;178:1–9. https://doi.org/10.1016/j.epsr.2019.106026.

(35) Inga-Ortega J, Inga-Ortega E, Gómez C, Hincapié R. Electrical load curve reconstruction required for demand response using compressed sensing techniques; 2017 IEEE PES Innov Smart Grid Technol Conf - Lat Am ISGT Lat Am. Ecuador: IEEE; 2017. pp. 1-6. https://doi.org/10.1109/ISGT-LA.2017.8126731.

(36) He S, Li K, Zhang M. A real-time power quality disturbances classification using hybrid method based on s-transform and dynamics. IEEE Trans Instrum Meas. 2013;62(9):2465–75. https://doi.org/10.1109/TIM.2013.2258761.

(37) Baraniuk RG, Cevher V, Duarte MF, Hegde C. Model-based compressive sensing. IEEE Trans Inf Theory. 2010;56(4):1982–2001. https://doi.org/10.1109/TIT.2010.2040894.