Reducing the carbon footprint in materials and industrialized building construction
Main Article Content
Introduction. The growth of construction and the adoption of industrialized systems increase the consumption of materials and the carbon embodied in the material (A1-A3), transport (A4), and construction (A5) modules of a life cycle assessment (LCA). This article identifies trends and parameters, quantifies the 100-year global warming potential (GWP100) of A1–A5 in a representative building, and prioritizes mitigation strategies.
Objective. The objective of this research is to establish carbon footprint reduction strategies based on the identification of trends and research parameters and an archetype for industrialized buildings within the Colombian context.
Methodology. A bibliometric analysis is performed in Scopus to understand recent trends and influential parameters in reducing embodied carbon in industrialized buildings. Next, GWP100 is quantified in A1–A5 with an archetype, using One Click LCA (LCA: Life Cycle Assessment) software. Finally, mitigation strategies are identified and prioritized.
Results. The industrialized building archetype reached 140.51 kg CO₂e/m² in A1–A5. The scenario improves (cement with less clinker, recycled steel, optimized transport, and electrification of equipment) under the impact to 85.57 kg CO₂e/m², a reduction of 39.10%. The most effective strategies were associated with the selection of sustainable materials.
Conclusions. Early specification decisions such as cements with higher clinker substitution, 100% scrap steel, and verifiable environmental product declarations (EPD), together with the selection of short transport routes and the electrification of equipment, represent the strategies with the best impact reduction.
- Carbon footprint
- Global warming
- Sustainable development
- Construction materials
- Construction industry
Butters C, Cheshmehzangi A, Bakhshoodeh R. Sustainable Construction: The Embodied Carbon Impact of Infrastructures and Landscaping. Urban Science 2024, Vol 8, Page 76 [Internet]. 28 de junio de 2024 [citado 10 de septiembre de 2025];8(3):76. https://doi.org/10.3390/urbansci8030076
Bautista J, Loaiza N. Impactos de la construcción sostenible y tradicional a nivel ambiental. Boletín Semillas Ambientales. 2018;12.
Khaiyum MZ, Sarker S, Kabir G. Evaluation of Carbon Emission Factors in the Cement Industry: An Emerging Economy Context. Sustainability 2023, Vol 15, Page 15407 [Internet]. 29 de octubre de 2023 [citado 10 de septiembre de 2025];15(21):15407. https://doi.org/10.3390/su152115407
Shivaprasad KN, Yang HM, Singh JK. A path to carbon neutrality in construction: An overview of recent progress in recycled cement usage. Journal of CO2 Utilization [Internet]. 1 de mayo de 2024 [citado 10 de septiembre de 2025];83:102816. Disponible en: https://doi.org/10.1016/j.jcou.2024.102816
Cheng D, Reiner DM, Yang F, Cui C, Meng J, Shan Y, et al. Projecting future carbon emissions from cement production in developing countries. Nat Commun [Internet]. 1 de diciembre de 2023 [citado 10 de septiembre de 2025];14(1):1-12. Disponible en: https://doi.org/10.1038/s41467-023-43660-x
Myint NN, Shafique M. Embodied carbon emissions of buildings: Taking a step towards net zero buildings. Case Studies in Construction Materials [Internet]. 1 de julio de 2024 [citado 10 de septiembre de 2025];20:e03024. Disponible en: https://doi.org/10.1016/j.cscm.2024.e03024
Röck M, Saade MRM, Balouktsi M, Rasmussen FN, Birgisdottir H, Frischknecht R, et al. Embodied GHG emissions of buildings - The hidden challenge for effective climate change mitigation. Appl Energy [Internet]. 15 de enero de 2020 [citado 10 de septiembre de 2025];258:114107. Disponible en: https://doi.org/10.1016/j.apenergy.2019.114107
Zhong X, Hu M, Deetman S, Steubing B, Lin HX, Hernandez GA, et al. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat Commun [Internet]. 1 de diciembre de 2021 [citado 10 de septiembre de 2025];12(1):1-10. Disponible en: https://doi.org/10.1038/s41467-021-26212-z
Sizirici B, Fseha Y, Cho CS, Yildiz I, Byon YJ. A review of carbon footprint reduction in construction industry, from design to operation. Materials [Internet]. 1 de octubre de 2021 [citado 10 de septiembre de 2025];14(20). Disponible en: https://doi.org/10.3390/ma14206094
Ma L, Azari R, Elnimeiri M. A Building Information Modeling-Based Life Cycle Assessment of the Embodied Carbon and Environmental Impacts of High-Rise Building Structures: A Case Study. Sustainability 2024, Vol 16, Page 569 [Internet]. 9 de enero de 2024 [citado 11 de septiembre de 2025];16(2):569. Disponible en: https://doi.org/10.3390/su16020569
Wei J, Ge B, Zhong Y, Lee TL, Zhang Y. Comparative analysis of embodied carbon in modular and conventional construction methods in Hong Kong. Sci Rep [Internet]. 1 de diciembre de 2024 [citado 11 de septiembre de 2025];14(1):1-20. Disponible en: https://doi.org/10.1038/s41598-024-73906-7
Al-Obaidy M, Courard L, Attia S. A Parametric Approach to Optimizing Building Construction Systems and Carbon Footprint: A Case Study Inspired by Circularity Principles. Sustainability (Switzerland) [Internet]. 1 de marzo de 2022 [citado 11 de septiembre de 2025];14(6):3370. Disponible en: https://doi.org/10.3390/su14063370
Minunno R, O’grady T, Morrison GM, Gruner RL. Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments. 2021 [citado 11 de septiembre de 2025]; Disponible en: https://doi.org/10.1016/j.rser.2021.110935
Huang Z, Zhou H, Miao Z, Tang H, Lin B, Zhuang W. Life-Cycle Carbon Emissions (LCCE) of Buildings: Implications, Calculations, and Reductions. Engineering [Internet]. 1 de abril de 2024 [citado 11 de septiembre de 2025];35:115-39. Disponible en: https://doi.org/10.1016/j.eng.2023.08.019
Kanafani K, Magnes J, Lindhard SM, Balouktsi M. Carbon Emissions during the Building Construction Phase: A Comprehensive Case Study of Construction Sites in Denmark. Sustainability 2023, Vol 15, Page 10992 [Internet]. 13 de julio de 2023 [citado 11 de septiembre de 2025];15(14):10992. Disponible en: https://doi.org/10.3390/su151410992
Wei J, Liu S, Guo H, Wang H, Wang J. Comparative analysis of embodied carbon in modular and conventional buildings. Buildings [Internet]. 2024;14(8):1866. Disponible en: https://doi.org/10.3390/buildings14081866
Amarasinghe I, Jayasinghe P, Alahakoon C. Paving the way for lowering embodied carbon emissions in the building and construction sector: A critical review. Clean Technol Environ Policy [Internet]. 2024;26:4359-77. Disponible en: https://doi.org/10.1007/s10098-024-03023-6
Análisis del ciclo de vida y emisiones de carbono en tres alternativas de sistemas constructivos para un proyecto de edificios para viviendas multifamiliares [Internet]. [citado 25 de octubre de 2025]. Disponible en: https://acofipapers.org/index.php/eiei/article/view/4598/2756
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).