Main Article Content

Authors

In recent years, the increase in the use and production of antibiotics for the protection of animals has been associated not only with human health problems due to bacterial resistance, but also with environmental problems, which have led to the deterioration of the water resources, since a large part of these are discharged into the environment without any type of treatment. This situation has highlighted the fact that a large part of the antibiotics are not efficiently removed in conventional wastewater treatment plants, being necessary to implement efficient and low-cost treatment alternatives. The evaluation of the removal of the antibiotic florfenicol was carried out using pilot horizontal subsurface flow wetlands, with a hydraulic retention time of 4.2 d, planted with macrophytes (Phragmites australis) and using concentrations of 10, 15, 20 and 25 mg/L of florfenicol. It was concluded that the removal of the antibiotic and the COD was decreasing over time, with a maximum removal percentage of 77.9% of florfenicol and 85.2% of COD during the first days of exposure. The results found allowed to demonstrate that florfenicol was not retained in the granular material of the wetlands, even in the macrophytes and that the predominant removal mechanism was biological degradation.

1.
Rodríguez DC, Cardona MA, Peñuela G. Behavior of horizontal sub-surface flow wetlands as an alternative for the wastewater treatment contaminated with florfenicol. inycomp [Internet]. 2021 Jan. 15 [cited 2024 Nov. 5];23(1):e9703. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/9703

(1) Yi XZ, Lin CH, Ong EJL, Wang MZ. Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere. 2019;216:213-223. https://doi.org/10.1016/j.chemosphere.2018.10.087.

(2) Hu P, Guo C, Zhang Y, Jiapei, L, Yuan Z, Jian X. Occurrence, distribution and risk assessment of abused drugs and their metabolites in a typical urban river in north China. Front. Environ. Sci. Eng. 2019;13(56):1-9. https://doi.org/10.1007/s11783-019-1140-5.

(3) Markets and Markets, Animal Antibiotics and Antimicrobials Market by Product (Tetracycline, Penicillin, Sulfonamide, Macrolide, Cephalosporin, Fluoroquinolone), Mode of Delivery (Premixes, Oral Powder, Injection), Animal (Food-producing & Companion) - Global Forecast to 2021. [cited 4 de mayo de 2020]. Available from: https://www.marketsandmarkets.com/Market-Reports/animal-antimicrobials-antibiotics-market-25161353.html.

(4) Rasheed M, Bilal F, Nabeel M, Adeel H.M.N. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019;122:52-66. https://doi.org/10.1016/j.envint.2018.11.038.

(5) OIE. Lista de agentes antimicrobianos importantes para la medicina veterinaria. Comité Internacional de la Organización Mundial de Sanidad Animal, 75ª Sesión General de mayo de 2007 (Resolución Nº XXVIII). 2019. p.1-9

(6) Park BK, Lim JH, Kim MS, Hwang YH, Yun HI. Pharmacokinetics of florfenicol and its metabolite, florfenicol amine, in dogs. Research in veterinary science. 2008;84(1):85–9. https://doi.org/10.1016/j.rvsc.2007.04.001.

(7) Pouliquen H, Morvan ML. Determination of Florfenicol in Freshwater, Sediments and Bryophyte Fontinalis antipyretica by HPLC with Fluorescence Detection. 2005, 62(5): 225–231. https://doi.org/10.1365/s10337-005-0631-7.

(8) Carraschi S, Shiogiri N, Venturini F, Da Cruz C, Gírio ACF, Machado J. Acute toxicity and environmental risk of oxytetracyline and florfenicol antibiotics to pacu (Piaractus mesopotamicus), Boletim do Instituto de Pesca Sao Paulo. 2011;37(2):115-122.

(9) Wei R, Ge F, Chen M, Wang R. Occurrence of Ciprofloxacin, Enrofloxacin, and Florfenicol in Animal Wastewater and Water Resources. Journal of Environmental Quality. 2012.41(5):1481-1486. https://doi.org/10.2134/jeq2012.0014.

(10) Bojarski B, Kot B, Witeska M. Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals. 2020;13(189):2-23. https://doi.org/10.3390/ph13080189.

(11) Hossain A, Nakamichi S, Habibullah-Al-Mamun, M, Tani K, Masunaga S, Matsuda H. Occurrence, distribution, ecological and resistance risks of antibiotics in surface water of finfish and shellfish aquaculture in Bangladesh. Chemosphere. 2017;188:329–336. https://doi.org/10.1016/j.chemosphere.2017.08.152.

(12) Wei ZS, Li WZ, D, Seo Y, Spinney R, Dionysiou DD, Wang Y, Zeng WZ, ,Xiao RY. Electrophilicity index as a critical indicator for the biodegradation of the pharmaceuticals in aerobic activated sludge processes. Water Res. 2019;160:10-17. https://doi.org/10.1016/j.watres.2019.05.057.

(13) Matamoros V, Caselles A, García J, Bayona JM. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiments. The Science of the total environment. 2008;394(1):171–176. https://doi.org/10.1016/j.scitotenv.2008.01.029.

(14) Özengin N, Elmaci A. Removal of Pharmaceutical Products in a Constructed Wetland. Iran J Biotechnol. 2016;14(4):221–229. https://doi.org/10.15171%2Fijb.1223.

(15) Nivala J, Kahl S, Boog J, van Afferden M, Reemtsma T, Müller RA. Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands. Sci Total Environ. 2019;649:1144-1156. https://doi.org/10.1016/j.scitotenv.2018.08.339.

(16) Anh BTK, Van Thanh N, Phuong NM, Nguyen YHH, Nhuyen HY, Bui Q, Dang DK. Selection of Suitable Filter Materials for Horizontal Subsurface Flow Constructed Wetland Treating Swine Wastewater. Water Air Soil Pollut. 2020;231(88):23-34. https://doi.org/10.1007/s11270-020-4449-6.

(17) Snow A, Bruce A, Wootton BC. Flow-through land-based aquaculture wastewater and its treatment in subsurface flow constructed wetlands Environmental Reviews. 2012;20(1):54-69. https://doi.org/10.1139/a11-023.

(18) Dangcong P, Barnet N, Delgenes JP, Moletta R. Effect of oxygen supply methods on the performance of a sequencing batch reactor for ammonium nitrification. Water environment Research. 2000;72(2):195-200. https://doi.org/10.2175/106143000X137284.

(19) APHA, AWWA, WPCF. Standard Methods for the Examination of Water and Wastewater, 23th ed. Washington, DC. 2017

(20) Londoño YA, Rodriguez DC, Peñuela GA. The operation of two EGSB reactors under the application of different loads of oxytetracycline and florfenicol. Water Science & Technology. 2012;66(12):2578–2585. https://doi.org/10.2166/wst.2012.485.

(21) Úsuga FA, Patiño AF, Rodríguez DC, Peñuela GA. Kinetic study and removal of contaminants in the leachate treatment using subsurface wetlands at pilot scale. Revista Ion. 2017;30(2):55-63. http://dx.doi.org/10.18273/revion.v30n2-2017005.

(22) Shimelis O, Ye M, Sidisky L. A New QuEChERS Dispersive SPE Material and Method for Analysis of Veterinary Drug Residue by LC-MS-MS. Sigma-Aldrich. 2011.

(23) Montoya JI, Ceballos L, Casas JC, Morató J. Estudio comparativo de la remoción de materia orgánica en humedales construidos de flujo horizontal subsuperficial usando tres especies de macrófitas. Revista EIA. 2010;14:75-84.

(24) Álvarez S, Rico E, Guerrero MC, Montes C. Decomposition of Juncus maritimus in two shallow lakes of Doñana national park. Internat. Rev. Hydrobiol. 2001;86(4-5):541-554. https://doi.org/10.1002/1522-2632(200107)86:4/5%3C541::AID-IROH541%3E3.0.CO;2-T.

(25) Sánchez E, Marín J.L, Hernández M.E. Liberación de oxígeno radial por las raíces de las plantas nativas de humedales tropicales costeros de Veracruz en respuesta a diferentes condiciones de inundación. Botanical Sciences. 2019;97(2):202-210. https://doi.org/10.17129/botsci.2069.

(26) Wiessner A, Kuschk P, Stottmeister U. Oxygen Release by Roots of Typha latifolia and Juncus effuses in Laboratory Hydroponic Systems. Acta Biotechnol. 2002;22(1-2):209-216. https://doi.org/10.1002/1521-3846(200205)22:1/2%3C209::AID-ABIO209%3E3.0.CO;2-O.

(27) Asprilla WJ, Ramírez J.S, Rodriguez, DC. Humedales artificiales de flujo subsuperficial: comparación de metodologías de diseño para el cálculo del área superficial basado en la remoción de materia orgánica. Ingenierías USBMed. 2020;11(2):65-73. https://doi.org/10.21500/20275846.4558.

Similar Articles

You may also start an advanced similarity search for this article.

Received 2020-05-13
Accepted 2020-09-27
Published 2021-01-15