Main Article Content

Authors

The presence of pharmaceutical compounds of therapeutic groups antiepileptics, hypolipemic agents, anti-inflammatory analgesic and tranquilizers were evaluated in three samplings, besides, the removal efficiency was estimated through chemically enhanced primary treatment with coagulation, flocculation and decantation processes in the wastewater treatment plant of Cali city (Colombia). 10 compounds were above the limit of quantitation of analytical technique used: carbamazepine, 10,11-dihydro-10,11-dihydroxycarbamazepine, gabapentin, fenofibric acid, gemfibrozil, diclofenac, ibuprofen, ketoprofen, naproxen, and paracetamol, in concentrations from affluent between 0.15 and 10 µgL-1. After the treatment, the majority of compounds had removal efficiency lower than 30%, while the paracetamol and naproxen had the highest removal of 98.1% and 57.1%, respectively. These removal efficiencies were linked not only with the coagulation-flocculation process, fair for lipophilic substances but also with the biodegradation of bacterial in the wastewater. 

1.
Jiménez-Bambague EM, Madera-Parra CA, Peña-Salamanca EJ. Removal of pharmaceutical compounds from municipal wastewater through chemically enhanced primary. inycomp [Internet]. 2020 Jan. 3 [cited 2024 Nov. 22];22(1):1-10. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/8794

Villamizar CAA, De Fonseca AE. Estudio preliminar de la presencia de compuestos emergentes en las aguas

residuales del Hospital Universidad del Norte. In: Hacia la sustentabilidad: los residuos sólidos como fuente de materia prima y energía - 4 SimposioIberoamericano de Ingeniería de Residuos y 4 Encuentro Nacional de

Expertos en Residuos Sólidos. Mexico, DF: Universidad Autónoma de Baja California; 2011. p. 275–80.

Fent K, Weston AA, Caminada D. Ecotoxicology of human pharmaceuticals. Aquatic toxicology. 2006;76(2):122-59. Doi:10.1016/j.aquatox.2005.09.009.

Rubio MDT, Pérez AD, Puerta ZB, Avila IYC. Automedicación y creencias en torno a su práctica en Cartagena,

Colombia. Revista Cuidarte. 2017;8(1):1509-18. Doi:10.15649/cuidarte.v8i1.367.

Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology.

;39(17):6649-63. Doi:10.1021/es0484799.

Hernando MD, Mezcua M, FernándezAlba AR, Barceló D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta. 2006;69(2):334-42. Doi: 10.1016/j.talanta.2005.09.037.

Chen M, Ohman K, Metcalfe C, Ikonomou MG, Amatya PL, Wilson J.Pharmaceuticals and endocrine disruptors in wastewater treatment effluents and in the water supply system of Calgary, Alberta, Canada. Water Quality Research Journal of Canada. 2006;41(4):351-64. Doi: 10.2166/wqrj.2006.039.

Zhou H, Zhou Y, Li H, Wang F. Fate and removal of selected endocrinedisrupting compounds in sewage using

activated sludge treatment. Water and Environment Journal. 2012;26(4):435- 44. Doi: 10.1111/j.1747-6593.2011.00302.x.

Sánchez O, León A, Montañez AM, Álvarez A, Guevara A, Cubillos J,Acosta L, Hernández MA, Ramírez MN,

Rubio MP, Barrera N, Pérez S, Sánchez D. Balance de resultados 2018 Plan Nacional de Desarrollo 2014-2018.

Bogotá (CO): Departamento Nacional de Planeación; 2019. 395 p. Disponible en: https://colaboracion.dnp.gov.co/CDT/Sinergia/Documentos/Balance_Resultados_2018_VFinal.pdf.

Madera-Parra CA, Jiménez-Bambague EM, Toro-Vélez AF, Lara-Borrero JA,Bedoya-Ríos DF, Duque-Pardo V.

Estudio exploratorio de la presencia de microcontaminantes en el ciclo urbano del agua en colombia: caso de estudio Santiago de Cali. Revista Internacional de Contaminación Ambiental. 2018;34(3):475-87. Doi:

20937/RICA.2018.34.03.10.

Miao XS, Yang JJ, Metcalfe CD. Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environmental Science & Technology. 2005; 39(19): 7469-75. Doi:

1021/es050261e.

Jones OAH, Voulvoulis N, Lester JN. Aquatic environmental assessment of the top 25 English prescription

pharmaceuticals. Water research. 2002; 36(20): 5013-22. Doi: 10.1016/S0043- 1354(02)00227-0.

Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water research. 2006; 40(8): 1686-96. Doi:10.1016/j.watres.2006.02.014

Jelic A, Gros M, Ginebreda A, Cespedes-Sanchez R, Ventura F, Petrovic M, Barcelo D. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water research. 2011; 45(3): 1165-76. Doi:10.1016/j.watres.2010.11.010.

Blair B, Nikolaus A, Hedman C, Klaper R, Grundl T. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere. 2015; 134: 395-01. Doi:10.1016/j.chemosphere.2015.04.078.

(15) Zhang Y, Price GW, Jamieson R, Burton D, Khosravi K. Sorption and desorption of selected non-steroidal antiinflammatory drugs in an agricultural loam-textured soil. Chemosphere. 2017; 174: 628-37. Doi:

1016/j.chemosphere.2017.02.027.

Radjenović J, Petrović M, Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water research. 2009; 43(3): 831-41. Doi:10.1016/j.watres.2008.11.043.

Ternes TA, Herrmann N, Bonerz M, Knacker T, Siegrist H, Joss A. A rapid method to measure the solid–water

distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water research. 2004;

(19): 4075-84. Doi:10.1016/j.watres.2004.07.015.

Carballa M, Omil F, Lema JM. Removal of cosmetic ingredients and pharmaceuticals in sewage primary

treatment. Water Research. 2005;39(19):4790-6. Doi:10.1016/j.watres.2005.09.018.

Lee S-H, Kim K-H, Lee M, Lee B-D. Detection status and removal characteristics of pharmaceuticals in

wastewater treatment effluent. Journal of Water Process Engineering. 2019;31:100828. Doi:

1016/j.jwpe.2019.100828.

Suarez S, Lema JM, Omil F. Pretreatment of hospital wastewater by coagulation–flocculation and flotation.

Bioresource technology. 2009;100(7):2138-46. Doi:10.1016/j.biortech.2008.11.015.

Ebeling JM, Sibrell PL, Ogden SR, Summerfelt ST. Evaluation of chemical coagulation–flocculation aids for the

removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge.

Aquacultural Engineering. 2003;29(1-2):23-42. Doi: 10.1016/S0144- 8609(03)00029-3.

Matamoros V, Salvadó V. Evaluation of a coagulation/flocculation-lamellar larifier and filtration-UV-chlorination

reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. Journal of

environmental management. 2013;117:96-102. Doi:10.1016/j.jenvman.2012.12.021.

Kosma CI, Lambropoulou DA, Albanis TA. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of hazardous materials. 2010;179(1-3):804-17. Doi:10.1016/j.jhazmat.2010.03.075.

Grenni P, Patrolecco L, Ademollo N, Tolomei A, Caracciolo AB. Degradation of gemfibrozil and naproxen in a river

water ecosystem. Microchemical Journal. 2013;107:158-64. Doi:10.1016/j.microc.2012.06.008.

Park J, Cho KH, Lee S, Cho J. Sorption of pharmaceuticals to soil organic matter in a constructed wetland by electrostatic interaction. Science of The Total Environment. 2018; 635: 1345-50. Doi:10.1016/j.scitotenv.2018.04.212.