Metodología híbrida basada en el regresor knn y el clasificador boosting para localizar fallas en sistemas de distribución
Contenido principal del artículo
En este artículo se presenta una metodología híbrida de localización de fallas en sistemas de distribución, a partir de una técnica de regresión basada en el método de los k vecinos más cercanos y una técnica de clasificación en la cual se utilizan múltiples clasificadores básicos en una estrategia denominada ‘Boosting’. En la metodología propuesta, inicialmente el sistema se divide por zonas para entrenar la máquina de clasificación. Después se parametriza y entrena la máquina de regresión basada en knn y la máquina de clasificación. Finalmente, para un dato nuevo, la técnica de regresión permite estimar la distancia a la cual ocurrió la falla, y el método de clasificación permite ubicar la falla en una de las zonas predefinidas, eliminando el problema de múltiple estimación. El localizador propuesto se prueba en el sistema de distribución IEEE 34 nodos, donde presenta un buen desempeño tanto para clasificación (precisión mínima de 95.7 %), como para regresión (error máximo absoluto de 8.05%). Esta propuesta es de fácil implementación, rápida y de bajo costo computacional.
- Hamilton Peláez-Álzate, Juan Jose Mora-Flórez, Sandra Pérez-Londoño, Estrategia colaborativa basada en la reactancia de falla y la firma del sistema para la localización de fallas en sistemas de distribución , Ingeniería y Competitividad: Vol. 13 Núm. 2 (2011)
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
Los autores ceden los derechos patrimoniales a la revista y a la Universidad del Valle sobre los manuscritos aceptados, pero podrán hacer los reusos que consideren pertinentes por motivos profesionales, educativos, académicos o científicos, de acuerdo con los términos de la licencia que otorga la revista a todos sus artículos.
Los artículos serán publicados bajo la licencia Creative Commons 4.0 BY-NC-SA (de atribución, no comercial, sin obras derivadas).