Contenido principal del artículo

Autores

Las biorrefinerías son actores estratégicos en aspectos económicos, sociales y ambientales, que deben considerar las políticas de transición energética y los objetivos de una economía circular y sostenible. A pesar de su potencial para reducir gases de efecto invernadero, el impacto de la tecnología bioenergética en biorrefinerías vinculadas a la caña de azúcar debe evaluarse y abordarse para asegurar su crecimiento sostenible en el medio ambiente, la biodiversidad, los recursos hídricos y el uso de la tierra. Desde el punto de vista de captura de CO2, Colombia ha venido avanzando en las políticas para la implementación de la tecnología de captura, uso, y almacenamiento de carbono. El aprovechamiento de biogás a partir de la biomasa residual abre un abanico de oportunidades y desafíos para el país. Esta revisión contribuye a la implementación de tecnologías de bioenergía con captura de CO2 en biorrefinerías asociadas a la caña de azúcar y que podría ser útil para guiar a los profesionales en la toma de decisiones y las investigaciones futuras sobre biorrefinerías sostenibles.

Edgar Mosquera, Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Santiago de Cali, Colombia

https://orcid.org/0000-0003-1561-6994

Gerardo Cabrera, Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Santiago de Cali, Colombia

https://orcid.org/0009-0003-4600-519X

Carmen Forero, Escuela de Ingeniería de los Recursos Naturales y del Ambiente, Universidad del Valle, Santiago de Cali, Colombia

https://orcid.org/0000-0003-0220-566X

1.
Mosquera E, Cabrera G, Forero C. Potencial económico, social y ambiental de tecnologías de bioenergía con captura de CO2 en biorrefinerías. inycomp [Internet]. 30 de mayo de 2024 [citado 25 de junio de 2024];26(2):e-30213360. Disponible en: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13360

Global Green House Gas Emissions Overview. U.S. Environmental Protection Agency. Disponible en: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data [consultado el 29/05/2024]

Irfan U, Zarracina J. Antarctica has lost 2.71 trillion tons of ice. Here´s what that looks like. 2018. Disponible en: https://www.vox.com/science-and-health/2018/6/28/17475342/Antarctica-ice-melt-thaw-climate-clonge-sea-level [consultado el 29/05/2024]

CO2 and Ocean Acidification: Causes, Impacts, Solutions. 2019. Disponible en: https://www.ucsusa.org/resources/co2-and-ocean-acidification#:~:text=affects%20marine%20life-,Ocean%20acidification%20affects%20marine%20life,survival%20of%20many%20marine%20species [consultado el 29/05/2024]

Emissions Gap Report 2019. UN Environment Programme. 2019. Disponible en: https://wedocs.unep.org/bitstream/handle/20.500.11822/30797/EGR2019.pdf [consultado el 29/05/2024]

The Production Gap. The discrepancy between countries´planned fossil fuel production and global production levels consistent with limiting warnming to 105°C or 2°C. Special Report 2020.UN Environment Programme (UNEP), Stockholm Environment Institute (SEI), International Institute for Sustainable Development (IISD), Overseas Development Institute (ODI), and E3G. disponible en: https://productiongap.org/wp-content/uploads/2020/12/PGR2020_FullRprt_web.pdf [consultado el 29/05/2024]

Summary for Policymakers. Understanding Global Warming of 1.5 °C. . IPCC Special Report 2018. Disponible en: https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf [consultado el 29/05/2024] DOI: https://doi.org/10.1017/9781009157940.001

Turgut M. Gür. Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science 2022; 89: 100965. DOI: https://doi.org/10.1016/j.pecs.2021.100965

Gibbins J, Chalmers H. Carbon capture and storage. Energy Pol., 2008; 36(12): 4317-4322 DOI: https://doi.org/10.1016/j.enpol.2008.09.058

Wang Y, Zhao L, A. Otto, M. Robinius, D. Stolten. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Proc., 114 (2017), pp. 650-665. DOI: https://doi.org/10.1016/j.egypro.2017.03.1209

Raza A, Gholami R, Rezaee R, V. Rasouli, M. Rabiei. Significant aspects of carbon capture and storage – a review. Petroleum, 2019; 5(4): 335-340 DOI: https://doi.org/10.1016/j.petlm.2018.12.007

Carbon Sequestration Leadership Forum. Technical Summary of Bioenergy Carbon Capture and Storage (BECCS). April 4, 2018. Disponible en: https://fossil.energy.gov/archives/cslf/sites/default/files/documents/Publications/BECCS_Task_Force_Report_2018-04-04.pdf [consultada el 29/05/2024]

Barlet-Gouédard V, Rimmelé G, Goffé B, Porcherie, Science G, T.-R. IFP. Well technologies for CO2. Geological Storage: CO2-Resistant Cement, 2007; 62(3):325-334 DOI: https://doi.org/10.2516/ogst:2007027

Van Vuuren DP, Deetman S, van Vliet J, van den Berg M, van Ruijven BJ, Koelbl B. The role of negative CO2 emissions for reaching 2 °C-insights from integrated assessment modelling. Clim. Change, 2013; 118: 15-27 DOI: https://doi.org/10.1007/s10584-012-0680-5

Shahbaz M, AlNouss A, Ghiat I, Mckay G, Mackey H, Elkhalifa S, Al-Ansari T. A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilization within BECCS networks. Resources, Conservation and Recycling 2021; 173: 105734 DOI: https://doi.org/10.1016/j.resconrec.2021.105734

Turning Circle: How bioenergy can supercharge Australia’s circular economy. Bioenergy Australia 2022. Disponible en: https://www.ieabioenergy.com/wp-content/uploads/2022/06/Turning-Circle-report.pdf [consultada el 29/05/2024]

Kemper J. Biomass and carbon dioxide capture and storage: a review. Int J Greenh Gas Control, 2015; 40: 401-430. DOI: https://doi.org/10.1016/j.ijggc.2015.06.012

Biorefineries: Adding Value to the Sustainable Utilisation of Biomass. IEA Bioenergy: T42: 2009: 01. Disponible en: https://www.ieabioenergy.com/blog/publications/biorefineries-adding-value-to-the-sustainable-utilisation-of-biomass/ [consultado el 29/05/2024]

Sagastume Gutiérrez A, Cabello Eras JJ, Hens L, Vandecasteele C. The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. Journal of Cleaner Production 2020; 269: 122317 DOI: https://doi.org/10.1016/j.jclepro.2020.122317

Socolow R., Desmond M, Aines R, Blackstock J., Bolland O., Kaarsberg T., Lewis N., Mazzotti M., Pfeffer A., Sawyer K., Siirola J., Smit B., Wilcox J. Direct air capture of CO2 with chemicals: a technology assessment for the APS panel on public affairs. American Physical Society Report (1/06/2011). Disponible en: https://www.aps.org/policy/reports/assessments/upload/dac2011.pdf [consultado el 29/05/2024]

Trends in atmospheric carbon dioxide (CO2). Global Monitoring Laboratory. Earth Systems Research Laboratories. U.S. Department of Commerce, National Oceanic & Atmospheric Administration disponible en: https://gml.noaa.gov/ccgg/trends/gr.html [consultado el 29/05/2024]

Rogelj J, Knutti R. Geosciences after Paris. Nature Geosci 2016; 9: 187–189 DOI: https://doi.org/10.1038/ngeo2668

IPCC Special Report 2018- Global Warming of 1.5 °C. Disponible en: https://www.ipcc.ch/sr15/; https://www.ipcc.ch/site/assets/uploads/sites/2/2019/09/IPCC-Special-Report-1.5-SPM_es.pdf [consultado el 29/05/2024]

Global CO2 emissions in 2019 (Feb. 11, 2020). International Energy Agency. Disponible en: https://www.iea.org/articles/global-co2-emissions-in-2019 [consultado el 29/05/2024]

World Energy Outlook 2020. International Energy Agency. Disponible en: https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf [consultado el 29/05/2024].

Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, et. al. Global carbon budget. Earth Syst. Sci. Data, 2020, 12, 3269-3340.

Carbon dioxide levels hit new record; covid impact ‘a tiny blip’, WMO says. United Nations. UN News (Nov. 23, 2020). Disponible en: https://news.un.org/en/story/2020/11/1078322 [consultado el 29/05/2024]

Global Energy Review 2021. CO2 emissions. Global CO2 emissions rebound by nearly 5% in 2021, approaching the 2018-2019 peak. International Energy Agency (2021). Disponible en: https://www.iea.org/reports/global-energy-review-2021/co2-emissions [consultado el 29/05/2024].

Carbis Bay G7 Summit Communique (2021). Disponible en: https://www.whitehouse.gov/briefing-room/statements-releases/2021/06/13/carbis-bay-g7-summit-communique/ [consultado el 29/05/2024]

Global Energy Transformation: A Roadmap to 2050. International Renewable Energy Agency (IRENA, 2019). Disponible en: https://irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf [consultado el 29/05/2029]

Renewable capacity statistics 2021. International Renewable Energy Agency (IRENA, 2021). Disponible en: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Apr/IRENA_RE_Capacity_Statistics_2021.pdf [consultado el 29/05/2024]

Renewbles 2022 Analysis and forescast to 2027. International Energy Agency. Disponible en: https://iea.blob.core.windows.net/assets/ada7af90-e280-46c4-a577-df2e4fb44254/Renewables2022.pdf [consultado el 29/05/2024]

Zhang J, Zhang X. 15 - the thermochemical conversion of biomass into biofuels, in: D. Verma, E. Fortunati, S. Jain, X. Zhang (Eds.), Biomass, Biopolymer-Based Materials, and Bioenergy, Woodhead Publishing 2019; 327-368. Doi: 10.1016/B978-0-08-102426-3.00015-1 DOI: https://doi.org/10.1016/B978-0-08-102426-3.00015-1

Kumar Yadav K, Krishnan S, Gupta N, Prasad S, Amin MA, Cabral-Pinto MMS, et al. Review on Evaluation of Renewable Bioenergy Potential for Sustainable Development: Bright Future in Energy Practice in India. ACS Sustainable Chem. Eng. 2021; 48: 16007–16030. DOI: https://doi.org/10.1021/acssuschemeng.1c03114

Vijay, V., Chandra, R. and Subbarao, P.M.V. Biomass as a means of achieving rural energy self-sufficiency: a concept. Built Environment Project and Asset Management, 2022; 12(3): 382-400. DOI: https://doi.org/10.1108/BEPAM-01-2021-0012

Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M. D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in The Global Energy Transformation. Energy Strategy Reviews 2019; 24: 38–50. DOI: https://doi.org/10.1016/j.esr.2019.01.006

Koytsoumpa EI, Magiri – Skouloudi D, Karellas S, Kakaras E. Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy. Renewable and Sustainable Energy Reviews. 2021; 152: 111641. DOI: https://doi.org/10.1016/j.rser.2021.111641

IEA (2020). An Energy Sector Roadmap to Carbon Neutrality in China. Disponible en: https://iea.blob.core.windows.net/assets/6689062e-43fc-40c8-9659-01cf96150318/AnenergysectorroadmaptocarbonneutralityinChina.pdf [consultada el 29/05/2024]

Perlack RD, Eaton LM, A. F. Turhollow Jr , M. H. Langholtz , C. C. Brandt , M. E. Downing , R. L. Graham , L. L. Wright , J. M. Kavkewitz and A. M. Shamey , US billion-ton update: biomass supply for a bioenergy and bioproducts industry, Oak Ridge Naitonal Lab, Oak Ridge, TN, 2011. Disponible en: https://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf [consultada el 29/05/2024]

Azar C, Lindgren K, Larson E, Möllersten K. Carbon capture and storage from fossil fuels and biomass – costs and potential role in stabilizing the atmosphere. Climatic Change, 2006; 74(1): 47-79 DOI: https://doi.org/10.1007/s10584-005-3484-7

Vaughan NE, Gough C, Mander S, Littleton EW, Welfle A, Gernaat DEHJ, van Vuuren DP. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environ. Res. Lett., 2018; 13(4): 044014 DOI: https://doi.org/10.1088/1748-9326/aaaa02

Bauer N, Calvin K, Emmerling J, Fricko O, Fujimori S, Hilaire J, et al. Shared socio-economic pathways of the energy sector-quantifying the narratives. Global Environ. Change, 2017; 42: 316-330 DOI: https://doi.org/10.1016/j.gloenvcha.2016.07.006

Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, et al. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Intergovernmental Panel on Climate Change (IPCC) (2018). Disponible en: https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Full_Report_LR.pdf [consultada el 29/05/2024]

Fajardy M, Köberle A, Mac Dowell N, Fantuzzi A. BECCS deployment: a reality check. Imperial College London (2019). Disponible en: https://www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/briefing-papers/BECCS-deployment---a-reality-check.pdf [consultado 29/05/2024]

Ritchie H, Roser M. CO₂ and Greenhouse Gas Emissions (2020). Disponible en: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#citation [consultado el 29/05/2024]

Fuss S, Lamb WF, Callaghan MW, Hilaire J, Creutzig F, Amann T, et al. Negative emissions - Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018; 13: 063002. DOI: https://doi.org/10.1088/1748-9326/aabf9f

Abanades JC, Arias B, Lyngfelt A, Mattisson T, Wiley DE, Li H, et al. Emerging CO2 capture systems. International Journal of Greenhouse Gas Control 2015; 40: 126-166 DOI: https://doi.org/10.1016/j.ijggc.2015.04.018

Pour N, Webley PA, Cook PJ. Unities for application of BECCS in the Australian power sector. Appl Energy, 2018; 224: 615-635 DOI: https://doi.org/10.1016/j.apenergy.2018.04.117

Moreira J. R., Romeiro V., Fuss S., Kraxner F., Pacca S. A. BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues. Appl Energy, 2016; 179: 55-63 DOI: https://doi.org/10.1016/j.apenergy.2016.06.044

Magnus R, Anders Lyngfelt, Øyvind Langørgen, Yngve Larring, Anders Brink, Sebastian Teir, Hallstein Havåg, Per Karmhagen. Negative CO2 emissions with chemical-looping combustion of biomass – a nordic energy research flagship project. Energy Proced, 2017; 114: 6074-6082. DOI: https://doi.org/10.1016/j.egypro.2017.03.1744

Kraxner F, Aoki K, Leduc S, Kindermann G, Fuss S, Yang J, Yamagata Y, Tak K-I, Obersteiner M. BECCS in South Korea-Analyzing the negative emissions potential of bioenergy as a mitigation tool. Renew Energy, 2014; 61: 102-108. DOI: https://doi.org/10.1016/j.renene.2012.09.064

Schmidt J, Leduc S, Dotzauer E, Schmid E. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria Energy Policy. 2011; 39: 3261-3280. DOI: https://doi.org/10.1016/j.enpol.2011.03.018

Sanchez DL, Nelson JH, Johnston J, Mileva A, Kammen DM. Biomass enables the transition to a carbon-negative power system across western North America. Nat Clim Change, 2015; 5: 230-234. DOI: https://doi.org/10.1038/nclimate2488

Yang Q, Zhou H, Bartocci P, Fantozzi F, Mašek O, Agblevor FA, Wei Z, Yang H, Chen H, Lu X, Chen G, Zheng C, Chris P. Nielsen & Michael B. McElroy. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat Commun 2021; 12: 1698. DOI: https://doi.org/10.1038/s41467-021-21868-z

Keller, M., Kaibe, K., Hatano, H., Otomo, J. Techno-economic evaluation of BECCS via chemical looping combustion of Japanese woody biomass. International Journal of Greenhouse Gas Control, 2019; 83: 69-82. DOI: https://doi.org/10.1016/j.ijggc.2019.01.019

De Freitas Dias Milão R, Carminati HB, de Queiroz F. Araújo O, de Medeiros JL. Thermodynamic, financial and resource assessments of a large-scale sugarcane-biorefinery: Prelude of full bioenergy carbon capture and storage scenario. Renewable and Sustainable Energy Reviews 2019; 113: 109251. DOI: https://doi.org/10.1016/j.rser.2019.109251

Möllersten K, Yan J, Moreira JR. Potential market niches for biomass energy with CO2 capture and storage: Opportunities for energy supply with negative CO2 emissions. Biomass Bioenergy, 2003; 25: 273-285. DOI: https://doi.org/10.1016/S0961-9534(03)00013-8

Tagomori IS, Carvalho FM, da Silva FTF, Paulo PR, Rochedo PRR, Szklo A, Schaeffer R. Designing an optimum carbon capture and transportation network by integrating ethanol distilleries with fossil-fuel processing plants in Brazil. Int. J. Greenh. Gas Control, 2018; 68: 112-127. DOI: https://doi.org/10.1016/j.ijggc.2017.10.013

Carminati HB, de Freitas D. Milão R, de Medeiros JL, de Queiroz F. Araújo O. Bioenergy and full carbon dioxide sinking in sugarcane-biorefinery with post-combustion capture and storage: Techno-economic feasibility. Applied Energy 2019; 254:113633. DOI: https://doi.org/10.1016/j.apenergy.2019.113633

Neto S, Szklo A, Rochedo PRR. Calcium looping post-combustion CO2 capture in sugarcane bagasse fuelled power plants. International Journal of Greenhouse Gas Control, 2021; 110: 103401. DOI: https://doi.org/10.1016/j.ijggc.2021.103401

Kerr HR. Capture and separation technology gaps and priority research needs. D.C. Thomas, S.M. Benson (Eds.), Carbon dioxide capture for storage in deep geologic formations- results from the CO2 capture project, Elsevier, Oxford, UK (2005). Doi: 10.1016/B978-008044570-0/50124-0 DOI: https://doi.org/10.1016/B978-008044570-0/50124-0

Fan LS, Zeng L, Wang W, Luo S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion - Prospect and opportunity. Energy Environ Sci, 2012; 5: 7254-7280 DOI: https://doi.org/10.1039/c2ee03198a

Bhave A, Taylor RHS, Fennell P, Livingston WR, Shah N, Dowell NM, et al. Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets. Appl Energy, 2017; 190: 481-489 DOI: https://doi.org/10.1016/j.apenergy.2016.12.120

Zhao X, Zhou H, Sikarwar VS, Zhao M, Park A-H A, Fennell PS, et al.. Biomass-based chemical looping technologies: the good, the bad and the future. Energy Environ. Sci., 2017; 10: 1885-1910. DOI: https://doi.org/10.1039/C6EE03718F

Peña SE, Forero CR, Velasco FJ. Bibliometric study of the combustion of cane cutting waste (RAC) in the capture of carbon dioxide. SN Appl. Sci. 2022; 4: 139. DOI: https://doi.org/10.1007/s42452-022-05009-9

General Secretariat of the European Council EUCO 169/14. 2030 Climate and Energy framework. European Council conclusions. 2014. Disponible en: https://www.consilium.europa.eu/media/24561/145397.pdf [Consultado el 29/05/2024]

Qasim M, Ayoub M, Adibah Ghazali N, Aqsha A, Mariam Ameen. Recent Advances and Development of Various Oxygen Carriers for the Chemical Looping Combustion Process: A Review. Ind. Eng. Chem. Res. 2021; 60: 8621−8641. DOI: https://doi.org/10.1021/acs.iecr.1c01111

Alalwan HA, Alminshid AH. CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Science of the Total Environment 2021; 788: 147850. DOI: https://doi.org/10.1016/j.scitotenv.2021.147850

Matzen, M., Pinkerton, J., Wang, X., Demirel, Y. Use of natural ores as oxygen carriers in chemical looping combustion: A review. International Journal of Greenhouse Gas Control 65 (2017) 1-14. DOI: https://doi.org/10.1016/j.ijggc.2017.08.008

Mhatre P, Panchal R, Singh A, Bibyan S. A systematic literature review on the circular economy initiatives in the European Union. Sustainable Production and Consumption 2021; 26: 187-202. DOI: https://doi.org/10.1016/j.spc.2020.09.008

Idziak K, Czakiert T, Krzywanski J, Zylka A, Kozlowska M, Nowak W. Safety and environmental reasons for the use of Ni-, Co-, Cu-, Mn- and Fe-based oxygen carriers in CLC/CLOU applications: An overview. Fuel 2020; 268: 117245. DOI: https://doi.org/10.1016/j.fuel.2020.117245

Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture. Woodhead Publishing Series in Energy (2015). A. Lyngfelt. 11 - Oxygen carriers for chemical-looping combustion.

Ali M, Jha NK, Pal N, Keshavarz A, Hoteit H, Mohammad Sarmadivaleh. Recent advances in carbon dioxide geological storage, experimental procedures, influencing parameters, and future Outlook. Earth-Science Reviews 2022; 225: 103895 DOI: https://doi.org/10.1016/j.earscirev.2021.103895

Cook, P, Causebrook, R, Gale, J, Michel, K, Watson, M. What have we learned from small-scale injection projects? Energy Procedia 2014; 63: 6129–6140. DOI: https://doi.org/10.1016/j.egypro.2014.11.645

Holloway S. Carbon dioxide capture and geological storage. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2007; 365(1853): 1095-1107. DOI: https://doi.org/10.1098/rsta.2006.1953

Matter JM, Stute M, Snæbjörnsdottir SÓ, Oelkers EH, Gislason SR, Aradottir ES, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 2016; 352(6291): 1312-1314. DOI: https://doi.org/10.1126/science.aad8132

Iglauer S. CO2–water–rock wettability: variability, influencing factors, and implications for CO2 geostorage. Acc. Chem. Res., 2017; 50(5): 1134-1142. DOI: https://doi.org/10.1021/acs.accounts.6b00602

Tokunaga TK, Wan J. Capillary pressure and mineral wettability influences on reservoir CO2 capacity. Rev. Mineral. Geochem., 2013;77(1): 481-503. DOI: https://doi.org/10.2138/rmg.2013.77.14

Al-Khdheeawi EA, Vialle S, Barifcani A, Sarmadivaleh M, Iglauer S. Impact of reservoir wettability and heterogeneity on CO2-plume migration and trapping capacity. Int. J. Greenhouse Gas Control, 2017; 58: 142-158. DOI: https://doi.org/10.1016/j.ijggc.2017.01.012

Al-Anssari S, Arif M, Wang S, Barifcani A, Lebedev M, Iglauer S. CO2 geo-storage capacity enhancement via nanofluid priming. Int. J. Greenhouse Gas Control, 2017; 63: 20-25. DOI: https://doi.org/10.1016/j.ijggc.2017.04.015

Jha NK, Ali M, Iglauer S, Lebedev M, Roshan H, Barifcani A, Sangwai JS, Sarmadivaleh M. Wettability alteration of quartz surface by low-salinity surfactant nanofluids at high-pressure and high-temperature conditions. Energy Fuel, 2019; 33(8): 7062-7068. DOI: https://doi.org/10.1021/acs.energyfuels.9b01102

Ali M, Aftab A, Awan FUR, Akhondzadeh H, Keshavarz A, Saeedi A, Iglauer S, Sarmadivaleh M. CO2-wettability reversal of cap-rock by alumina nanofluid: Implications for CO2 geo-storage. Fuel Process. Technol., 2021; 214: 106722 DOI: https://doi.org/10.1016/j.fuproc.2021.106722

Ali M, Sahito MF, Jha NK, Arain ZU, Memon S, Keshavarz A, Iglauer S, Saeedi A, Sarmadivaleh M. Effect of nanofluid on CO2-wettability reversal of sandstone formation; implications for CO2 geo-storage. J. Colloid Interface Sci., 2020; 559: 304-312. DOI: https://doi.org/10.1016/j.jcis.2019.10.028

IDEAM, Fundación Natura, PNUD, MADS, DNP, CANCILLERÍA. 2021. Tercer Informe Bienal de Actualización de Colombia a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC). IDEAM, Fundación Natura, PNUD, MADS, DNP, CANCILLERÍA, FMAM. Bogotá D.C., Colombia.

Eckstein D, Künzel V, Schäfer L, Winges M. Global Climate Risk Index 2020. Germanwatch (2021). Tomado de: https://www.germanwatch.org/en/cri

El acuerdo de París así actuará Colombia frente al Cambio Climático (2016). Ministerio de Ambiente y Desarrollo Sostenible, Fundación Natura, World Wildlife Fund (WWF). https://wwflac.awsassets.panda.org/downloads/el_acuerdo_de_paris__asi_actuara_colombia_frente_al_cambio_climatico.pdf [consultado el 1/07/2023]

Cambio Climático. Cancilleria de Colombia. Disponible en: https://www.cancilleria.gov.co/cambio-climatico-0 [consultado el 29/05/2024]

Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC), 2020. https://www.minambiente.gov.co/wp-content/uploads/2021/10/informe-actualizacion-contribucion-determinada-Colombia-ndc-2020.pdf [Consultado el 29/05/2024]

Burck J, Uhlich T, Bals C, Höhne N, Nascimento L, Wong J, Tamblyn A, Reuther J. Climate Change Performance Index 2022. Disponible en: https://ccpi.org/download/climate-change-performance-index-2022-2/

Duque Márquez I, Mesa Puyo D. Transición energética: un legado para el presente y el futuro de Colombia. Ministerio de Minas y Energía (2021). Disponible en: https://www.minenergia.gov.co/static/legado_transicion_energetica/src/document/TRANSICION%20ENERGETICA%20COLOMBIA%20BID-MINENERGIA-2403.pdf [consultada el 29/05/2024]

Ley No. 715 del 13 de mayo de 2014. Por medio de la cual se regula la integración de la energías renovables no convencionales al sistema energético nacional. Disponible en: http://www.upme.gov.co/normatividad/nacional/2014/ley_1715_2014.pdf [consultada el 29/05/2024]

Arias-Gaviria J, Carvajal-Quintero SX, Arango-Aramburo S. Understanding dynamics and policy for renewable energy diffusion in Colombia Renew. Energy 2019; 139: 1111-1119 DOI: https://doi.org/10.1016/j.renene.2019.02.138

Obregon L, Valencia G, Duarte J. Study on the Applicability of Sustainable Development Policies in Electricity Generation Systems in Colombia. International Journal of Energy Economics and Policy, 2019; 9(6): 492-502 DOI: https://doi.org/10.32479/ijeep.8375

Gonzalez-Salazara MA, Venturinia M, Poganietz WR, Finkenrath M, Manoel Regis L.V. Leal. Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia. Renewable and Sustainable Energy Reviews 2017; 73: 159–177. DOI: https://doi.org/10.1016/j.rser.2017.01.082

Yáñez E, Ramírez A, Núñez-López V, Castillo E, Faaij A. Exploring the potential of carbon capture and storage-enhanced oil recovery as a mitigation strategy in the Colombian oil industry. International Journal of Greenhouse Gas Control, 2020; 94: 102938. DOI: https://doi.org/10.1016/j.ijggc.2019.102938

Younis A, Benders R, Delgado R, Lap T, Gonzalez-Salazar M, Cadena A, Faaij A. System analysis of the bio-based economy in Colombia: A bottom-up energy system model and scenario analysis. Biofuels, Bioproducts and Biorefining, 2021; 15(2): 481-501. DOI: https://doi.org/10.1002/bbb.2167

ASOCAÑA 2022. Informe Anual 2021-2022. Disponible en: http://www.asocana.org/modules/documentos/17611.aspx

Rivera-Cadavid L, Manyoma-Velásquez PC, Manotas-Duque DF. Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR). Sustainability 2019; 11: 6565 DOI: https://doi.org/10.3390/su11236565

Moncada J, Tamayo JA, Cardona CA. Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery. Chemical Engineering Sci. 2014; 118: 126-140 DOI: https://doi.org/10.1016/j.ces.2014.07.035

Biodiésel y bioetanol: Imprescindible en la transición energética. Resvista Nacional de Agricultura (Ed. 1028, Agosto 2022). Disponible en: https://sac.org.co/biodiesel-y-bioetanol-imprescindibles-en-la-transicion-energetica/ [consultada el 29/05/2024]

Dussán, K.J. et al. (2019). Sugarcane Biofuel Production in Colombia. In: Khan, M., Khan, I. (eds) Sugarcane Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-030-18597-8_11 [consultada el 29/05/2024] DOI: https://doi.org/10.1007/978-3-030-18597-8_11

Resolución No. 40177 del 3 de julio de 2020. Por la cual se definen los energéticos de bajas o cero emisiones teniendo como criterio fundamental su contenido de componentes nocivos para la salud y el medio ambiente y se adoptan otras disposiciones. Disponible en: https://www.andi.com.co/Uploads/MinMinas-ResolucionConjunta-2020-N0040177_20200703.pdf [consultado el 29/05/2024]

Unidad de Planeación Minero Energética UPME (2020). Plan Energético Nacional 2020-2050. Tomado de: https://www1.upme.gov.co/DemandayEficiencia/Documents/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf [consultado el 29/05/2024]

Unidad de Planeación Minero Energética UPME (2022). Plan de Acción Indicativo del Programa de Uso Racional de Energía PAI-PROURE 2022-2030. Disponible en: https://www1.upme.gov.co/DemandayEficiencia/Documents/PROURE/Documento_PROURE_2022-2030_v4.pdf [consultado el 29/05/2024]

Biofuels Market Size to Surpass US$ 201.21 Billion by 2030. Precedence Research, Disponible en: https://www.globenewswire.com/news-release/2022/01/19/2369236/0/en/Biofuels-Market-Size-to-Surpass-US-201-21-Billion-by-2030.html [consultado el 29/05/2024]

Bioethanol Market by Feedstock (Starch based, Sugar based, Cellulose-based), Fuel blend (E%, E10, E15 to E70, E75 & E85), End-use (transportation, pharmaceutical, cosmetic, alcoholic beverages), Generation and Region Global Forescast to 2028. Bioethanol Market, Disponible en: https://www.marketsandmarkets.com/Market-Reports/bioethanol-market-131222570.html [consultado el 29/05/2024]

El bagazo de caña ayuda a la seguridad energética nacional. Revista Nacional de Agricultura N° 1016 · Julio 2021.

Más que azúcar, una fuente de energía renovable para el país. Sector Agroindustrial de la Caña. BioEnergía. Junio 2017, Disponible en: https://www.asocana.org/documentos/562017-BC7B477D-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,2D2D2D.pdf [consultada el 29/05/2024]

Ley No 2099 del 10 de julio de 2021. Por medio de la cual se dictan disposiciones para la transición energética, la dinamización del mercado energético, la reactivación económica del país y se dictan otras disposiciones. Disponible en: https://dapre.presidencia.gov.co/normativa/normativa/LEY%202099%20DEL%2010%20DE%20JULIO%20DE%202021.pdf [consultada el 29/05/2024]

Becerra Quiroz AP. Evaluación de la sustentabilidad del aprovechamiento del bagazo de caña de azúcar en el Valle del Cauca Colombia a partir del Análisis de Ciclo Vida. Tesis de Maestría, Universidad Distrital Francisco José de Caldas. 2016 DOI: https://doi.org/10.16925/in.v12i20.1548

Universidad Industrial de Santander. Unidad de Planeación Minero Energética. Realizar un análisis del potencial de reutilización de minerales en Colombia y definir estrategias orientadas a fomentar su aprovechamiento por parte de la industria en el país bajo el enfoque de economía circular. Contrato Interadministrativo CI-049-2018. Entregable No. 3. Documento de Análisis Internacional. Bucaramanga, 2018. http://www.andi.com.co/Uploads/Documento%20An%C3%A1lisis%20Nacional.pdf [consultado el 6/07/2023]

Recibido 2023-11-15
Aceptado 2024-02-14
Publicado 2024-05-30