Main Article Content

Authors

The field of healthcare, driven by the continuous growth of data related to human health and the ongoing course of digital transformation, is undergoing a significant evolution. In this experimental study, a comparison of Artificial Intelligence techniques, specifically neural networks, Random Forest, and decision tree, was conducted to evaluate their effectiveness in diagnosing cardiovascular diseases. This was achieved by leveraging clinical data available in open-access databases. The methodology focused on identifying the most influential variables in cardiovascular disease diagnosis through a comprehensive literature review. Subsequently, the Machine Learning techniques to be employed were determined, and the most suitable dataset for these variables was acquired. The results revealed that all three Artificial Intelligence techniques demonstrated good performance in diagnosing cardiovascular diseases. It is worth highlighting that the neural network-based model excelled with an accuracy of 89%, establishing itself as a highly relevant tool for supporting timely disease diagnosis. These findings suggest a potential positive impact on clinical practice and future healthcare by providing healthcare professionals with a valuable resource for making informed decisions in the diagnosis and treatment of cardiovascular diseases. Ultimately, this could enhance the quality of patient care and their overall well-being. This study reinforces the notion that Machine Learning techniques play a crucial role in transforming healthcare and clinical decision-making in the field of health, offering new perspectives for the prevention and treatment of cardiovascular diseases and other medical disorders.

1.
Arrubla-Hoyos W, Carrascal-Porras F, Gómez JE. Cardiovascular risk prediction through machine learning: a comparative analysis of techniques. inycomp [Internet]. 2024 Feb. 26 [cited 2024 Nov. 18];26(1):e-20113229. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/13229

MiniSalud [Internet] Mortalidad en Colombia periodo 2020-2021. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/mortalidad-colombia-periodo-2020-2021.pdf

Organización Panamericana de la Salud OPS[Internet]. Enfermedades cardiovasculares.2023. Available from: https://www.paho.org/es/temas/enfermedades-cardiovasculares

Departamento Nacional de Estadísticas (DANE) Defunciones no Fetales 2021 preliminar. 2021. Available from: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/nacimientos-y-defunciones/defunciones-no-fetales/defunciones-no-fetales-2021

MedlinePlus [Internet]. Que es la Enfermedad cardiovascular.2019. Available from: https://medlineplus.gov/spanish/ency/patientinstructions/000759.htm

Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. Can machine-learning improve cardiovascular risk prediction using routine clinical data. PloS one, 2017, 12(4), e0174944. DOI: https://doi.org/10.1371/journal.pone.0174944

Mosquera, R., Castrillón, O. D., & Parra, L. Predicción de Riesgos Psicosociales en Docentes de Colegios Públicos Colombianos utilizando Técnicas de Inteligencia Artificial. Información Tecnológica, 2018, 29(4), 267–282. Available from: https://doi-org.bibliotecavirtual.unad.edu.co/10.4067/S0718-07642018000400267 DOI: https://doi.org/10.4067/S0718-07642018000400267

Agrawal, R. Predictive Analysis Of Breast Cancer Using Machine Learning Techniques. Ingeniería Solidaria, 2019, 15(29), 1–23. Available from: https://doi-org.bibliotecavirtual.unad.edu.co/10.16925/2357-6014.2019.03.01 DOI: https://doi.org/10.16925/2357-6014.2019.03.01

Chávez-Vivas, M., González-Casanova, J. E., Dávila, L. A., & Rojas-Gómez, D. M. Factores de riesgo de enfermedad cardiovascular en asistentes a un hospital de Cali, Colombia. Revista Latinoamericana de Hipertension, 2018, 13(5), 472-479.

Naciones Unidas. [Internet]. Tecnologías Digitales para el nuevo futuro. Available from: https://repositorio.cepal.org/server/api/core/bitstreams/879779be-c0a0-4e11-8e08-cf80b41a4fd9/content

Arboleda Carvajal, M. S., & García Yánez, A. R. Riesgo cardiovascular: Análisis basado en las tablas de framingham en pacientes asistidos en la unidad ambulatoria 309, IESS – sucúa. Revista Med, 2017, 25(1), 20-30. Available from: https://doi.org/10.18359/rmed.1949 DOI: https://doi.org/10.18359/rmed.1949

Sánchez Lezama, F., Domínguez Carrillo, L. G., Rivas León, S. C., & Flores Peña, D. Correlación del strain longitudinal global con el grado de disfunción diastólica, factores de riesgo cardiovascular y variables del ecocardiograma 2D. Acta Médica Grupo Ángeles, 2021,19(4), 485-490. Available from: https://doi.org/10.35366/102532 DOI: https://doi.org/10.35366/102532

Tasmeem S. Heart Disease Classification Dataset. 2021. Available from: https://www.kaggle.com/datasets/sumaiyatasmeem/heart-disease-classification-dataset/

Monroy Alfaro, C. R. El Lenguaje Python Y Su Potencial en El Desarrollo De Software De Inteligencia Artificial. Masferrer Investiga: Revista Científica de La Universidad Salvadoreña Alberto Masferrer, 2022, 12(1), 18–41.

Arana, C. Modelos de Aprendizaje Automático Mediante Árboles de Decisión. Documentos de Trabajo, 2021, 778, 1–20.

Dimitriadis, S., Liparas, D., for the Alzheimer’s Disease Neuroimaging Initiative, & Alzheimer’s Disease Neuroimaging Initiative. How random is the random forest? random forest algorithm on the service of structural imaging biomarkers for alzheimer’s disease: From alzheimer’s disease neuroimaging initiative (ADNI) database. Neural Regeneration Research, 2018, 13(6), 962-970. Available from:https://doi.org/10.4103/1673-5374.233433 DOI: https://doi.org/10.4103/1673-5374.233433

Couronné, R., Probst, P., & Boulesteix, A. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinformatics, 2018, 19(1), 270-270. Available from:https://doi.org/10.1186/s12859-018-2264-5 DOI: https://doi.org/10.1186/s12859-018-2264-5

Calvo, D[Internet]. Clasificación de redes neuronales artificiales. Diego Calvo. 2017. Available from: https://www.diegocalvo.es/clasificacion-de-redes-neuronales-artificiales/

Chai, S. S., Cheah, W. L., Goh, K. L., Chang, Y. H. R., Sim, K. Y., & Chin, K. O. A Multilayer Perceptron Neural Network Model to Classify Hypertension in Adolescents Using Anthropometric Measurements: A Cross-Sectional Study in Sarawak, Malaysia. Computational & Mathematical Methods in Medicine, 2021, 1–11. Available from: https://doi.org/10.1155/2021/2794888 DOI: https://doi.org/10.1155/2021/2794888

Madhiarasan, M., Louzazni, M., & Roy, P. P. Novel Cooperative Multi-Input Multilayer Perceptron Neural Network Performance Analysis with Application of Solar Irradiance

Silva-González, S. M., Rodríguez-Chávez, M. H., & Polanco-Martagón, S. Implementación de una red neuronal artificial como módulo de dominio de un sistema de tutoría inteligente. Dilemas contemporáneos: educación, política y valores, 9(SPE1).Forecasting. International Journal of Photoenergy, 2021, 1–24. Available from: https://doi.org/10.1155/2021/7238293 DOI: https://doi.org/10.46377/dilemas.v9i.2930

Graupe, D. Principles Of Artificial Neural Networks: Basic Designs To Deep Learning (4th Edition). World Scientific Publishing Company, 2019, Available from: https://books.google.co.uk/books?id=77uSDwAAQBAJ DOI: https://doi.org/10.1142/11306

Hossein Abadi, L., Aghighi, H., Matkan, A., & Shakiba, A. Downscaling and evaluation of evapotranspiration using remotely sensed data and machine learning algorithms (study area: Moghan Plain, Iran). ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 10, 295-300 DOI: https://doi.org/10.5194/isprs-annals-X-4-W1-2022-295-2023

Zheng, A., & Casari, A. Feature engineering for machine learning: principles and techniques for data scientists. “ O’Reilly Media, Inc. 2018

Wang, J., Jing, X., Yan, Z., Fu, Y., Pedrycz, W., & Yang, L. T. A. survey on trust evaluation based on machine learning. ACM Computing Surveys (CSUR), 2020 53(5), 1-36. DOI: https://doi.org/10.1145/3408292

Japkowicz, N. Why question machine learning evaluation methods. In AAAI workshop on evaluation methods for machine learning (pp. 6-11). University of Ottawa. 2006

Arce, J. I. B. La matriz de confusión y sus métricas. Juan Barrios. 2019https://www.juanbarrios.com/la-matriz-de-confusion-y-sus-metricas/

Talbot, J., Lee, B., Kapoor, A., & Tan, D. S. EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1283-1292). 2009. DOI: https://doi.org/10.1145/1518701.1518895

Similar Articles

You may also start an advanced similarity search for this article.

Received 2023-09-14
Accepted 2023-11-15
Published 2024-02-26