Advances in research on the improvement of green waste composting in developing countries: experiences from Colombia
Main Article Content
Composting is one of the most applied biotechnological alternatives for the treatment and recovery of green waste (GW). However, its transformation is a challenge, due to the physicochemical characteristics of GWs that affect the process time and product quality. This limits the application of this technology in developing countries such as Colombia. This article presents contributions on the advances in GW composting research, based on results of six years of studies carried out by the authors of this paper. Reflections are addressed on: i) the analysis of the physicochemical quality of the substrates, ii) the evaluation of strategies to improve the process and the quality of the product, and iii) the perspectives on the alternatives implemented so far. The results of the investigations show that the strategies at different scales have been effective in reducing process times (between 43 and 67 days), improving the conditions for sanitizing the material (temperature in thermophilic ranges for a longer time -6 additional days- compared to treatments without strategies) and compliance with product quality standards. The reflection proposes new perspectives to continue with the studies of improvement of GW composting, among which issues associated with the use of co-substrates, additives, and bacterial inoculum are addressed, as well as the evaluation of product quality and employment of optimization tools in GW composting. These studies help position GW composting as a suitable option for the management of the lignocellulosic fraction present in municipal solid waste (MSW).
Langsdorf A, Volkmar M, Holtmann D, Ulber R. Material utilization of green waste: a review on potential valorization methods. Bioresources and Bioprocessing. 2021;8(1). doi: 10.1186/s40643-021-00367-5. DOI: https://doi.org/10.1186/s40643-021-00367-5
Kan X, Yao Z, Zhang J, Tong YW, Yang W, Dai Y, et al. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment. Bioresource Technology. 2017;228:77-88. doi: 10.1016/j.biortech.2016.12.064. DOI: https://doi.org/10.1016/j.biortech.2016.12.064
Liu X, Xie Y, Sheng H. Green waste characteristics and sustainable recycling options. Resources, Environment and Sustainability. 2023;11:100098. doi: https://doi.org/10.1016/j.resenv.2022.100098. DOI: https://doi.org/10.1016/j.resenv.2022.100098
Parra-Orobio BA, Soto-Paz J, Hernández-Cruz JA, Gómez-Herreño MC, Domínguez-Rivera IC, Ocaña-Oviedo ER. Evaluation of biochar as an additive in the co-composting of green waste and food waste. Sustainability. 2023 doi: 10.3390/su15097437. DOI: https://doi.org/10.3390/su15097437
BM, MVCT. Tratamiento de residuos sólidos en el marco del servicio público de aseo. In: Banco Mundial-Ministerio de Vivienda CyT, editor. Bogotá D.C.2021.
García BRA. Alternativas para el aprovechamiento de los residuos de poda del arbolado urbano de Valledupar según su impacto en el inventario del ciclo de vida. Departamento de Ingeniería Civil y Ambiental. Barranquilla: Universidad del Norte 2021.
Wei Y-S, Fan Y-B, Wang M-J, Wang J-S. Composting and compost application in China. Resources, Conservation and Recycling. 2000;30(4):277-300. doi: https://doi.org/10.1016/S0921-3449(00)00066-5. DOI: https://doi.org/10.1016/S0921-3449(00)00066-5
Morales AB, Bustamante MA, Marhuenda-Egea FC, Moral R, Ros M, Pascual JA. Agri-food sludge management using different co-composting strategies: study of the added value of the composts obtained. Journal of Cleaner Production. 2016;121:186-97. doi: https://doi.org/10.1016/j.jclepro.2016.02.012. DOI: https://doi.org/10.1016/j.jclepro.2016.02.012
Reyes-Torres M, Oviedo-Ocaña ER, Dominguez I, Komilis D, Sánchez A. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management. 2018;77:486-99. doi: https://doi.org/10.1016/j.wasman.2018.04.037. DOI: https://doi.org/10.1016/j.wasman.2018.04.037
Komilis DP, Ham RK. The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management. 2003;23(5):419-23. doi: https://doi.org/10.1016/S0956-053X(03)00062-X. DOI: https://doi.org/10.1016/S0956-053X(03)00062-X
López MJ, Elorrieta MA, Vargas-Garcı́a MC, Suárez-Estrella F, Moreno J. The effect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. Bioresource Technology. 2002;81(2):123-9. doi: https://doi.org/10.1016/S0960-8524(01)00112-2. DOI: https://doi.org/10.1016/S0960-8524(01)00112-2
Oviedo-Ocaña ER, Soto-Paz J, Domínguez I, Sanchez-Torres V, Komilis D. A systematic review on the application of bacterial inoculants and microbial consortia during green waste composting. Waste and Biomass Valorization. 2022;13(8):3423-44. doi: 10.1007/s12649-022-01687-z. DOI: https://doi.org/10.1007/s12649-022-01687-z
Hernández-Gómez A, Calderón A, Medina C, Sanchez-Torres V, Oviedo-Ocaña ER. Implementation of strategies to optimize the co-composting of green waste and food waste in developing countries. A case study: Colombia. Environmental Science and Pollution Research. 2021;28(19):24321-7. doi: 10.1007/s11356-020-08103-w. DOI: https://doi.org/10.1007/s11356-020-08103-w
Oviedo-Ocaña ER, Hernández-Gómez AM, Ríos M, Portela A, Sánchez-Torres V, Domínguez I, et al. A Comparison of two-stage and traditional co-composting of green waste and food waste amended with phosphate rock and sawdust. Sustainability. 2021 doi: 10.3390/su13031109. DOI: https://doi.org/10.3390/su13031109
Oviedo-Ocaña ER, Daza-Torres M, Marmolejo-Rebellón LF, Osorio-Ortiz A, Torres-Lozada P. Influencia de la incorporación de pasto estrella como material de soporte (Cynodon Plectostachyus) en el compostaje de biorresiduos de origen municipal. Revista Científica Ingeniería y Desarrollo. 2013;31:251-71.
Oviedo-Ocaña ER, Dominguez I, Komilis D, Sánchez A. Co-composting of green waste mixed with unprocessed and processed food waste: influence on the composting process and product quality. Waste and Biomass Valorization. 2019;10(1):63-74. doi: 10.1007/s12649-017-0047-2. DOI: https://doi.org/10.1007/s12649-017-0047-2
Oviedo-Ocaña ER, Soto-Paz J, Torres VS, Castellanos-Suarez LJ, Komilis D. Effect of the addition of the Bacillus sp., Paenibacillus sp. bacterial strains on the co-composting of green and food waste. Journal of Environmental Chemical Engineering. 2022;10(3):107816. doi: https://doi.org/10.1016/j.jece.2022.107816. DOI: https://doi.org/10.1016/j.jece.2022.107816
Soto-Paz J, Oviedo-Ocaña ER, Angarita-Rangel MA, Rodríguez-Flórez LV, Castellanos-Suarez LJ, Nabarlatz D, et al. Optimization of lignocellulolytic bacterial inoculum and substrate mix for lignocellulose degradation and product quality on co-composting of green waste with food waste. Bioresource Technology. 2022;359:127452. doi: https://doi.org/10.1016/j.biortech.2022.127452. DOI: https://doi.org/10.1016/j.biortech.2022.127452
Oviedo-Ocaña ER, Soto-Paz J, Sanchez-Torres V, Sánchez A. Incorporation of substrates and inoculums as operational strategies to promote lignocellulose degradation in composting of green waste—a pilot-scale study. Processes. 2023 doi: 10.3390/pr11010241. DOI: https://doi.org/10.3390/pr11010241
Stentiford E., M DB. Composting process. United Kingdom: Blackwell Publishing Ltd; 2010. DOI: https://doi.org/10.1002/9780470666883.ch34
Oviedo-Ocaña ER, Marmolejo-Rebellón LF, Torres-Lozada P. Avances en investigación sobre el compostaje de biorresiduos en municipios menores de países en desarrollo. Lecciones desde Colombia. Ing Invest y Tecnol. 2017;18(1):31-42. DOI: https://doi.org/10.22201/fi.25940732e.2017.18n1.003
Camacho AD, Martinez L, Ramírez SH, Valenzuela R, Valdés M. Potencial de algunos microorganismos en el compostaje de residuos sólidos. Terra Latinoam. 2014;32(4):291-300.
Soto-Paz J, Oviedo-Ocaña ER, Manyoma PC, Marmolejo-Rebellón LF, Torres-Lozada P, Barrena R, et al. Influence of mixing ratio and turning frequency on the co-composting of biowaste with sugarcane filter cake: a mixture experimental design. Waste and Biomass Valorization. 2020;11(6):2475-89. doi: 10.1007/s12649-019-00592-2. DOI: https://doi.org/10.1007/s12649-019-00592-2
Wei Z, Zhao Y, Zhao L, Wang L, Wu J. The contribution of microbial shikimic acid to humus formation during organic wastes composting: a review. World Journal of Microbiology and Biotechnology. 2023;39(9):240. doi: 10.1007/s11274-023-03674-5. DOI: https://doi.org/10.1007/s11274-023-03674-5
Kang J, Yin Z, Pei F, Ye Z, Song G, Ling H, et al. Aerobic composting of chicken manure with penicillin G: Community classification and quorum sensing mediating its contribution to humification. Bioresource Technology. 2022;352:127097. doi: https://doi.org/10.1016/j.biortech.2022.127097. DOI: https://doi.org/10.1016/j.biortech.2022.127097
Vargas-Pineda OI, Trujillo-González JM, Torres-Mora MA. El compostaje, una alternativa para el aprovechamiento de residuos orgánicos en las centrales de abastecimiento. ORINOQUIA. 2019;23:123-9. DOI: https://doi.org/10.22579/20112629.575
Xu M, Sun H, Chen E, Yang M, Wu C, Sun X, et al. From waste to wealth: Innovations in organic solid waste composting. Environmental Research. 2023;229. doi: 10.1016/j.envres.2023.115977. DOI: https://doi.org/10.1016/j.envres.2023.115977
Bustamante MA, Ceglie FG, Aly A, Mihreteab HT, Ciaccia C, Tittarelli F. Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition. Journal of Environmental Management. 2016;182:557-63. doi: 10.1016/j.jenvman.2016.08.016. DOI: https://doi.org/10.1016/j.jenvman.2016.08.016
Vandecasteele B, Boogaerts C, Vandaele E. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality. Waste Management. 2016;58:169-80. doi: https://doi.org/10.1016/j.wasman.2016.09.012. DOI: https://doi.org/10.1016/j.wasman.2016.09.012
Sánchez ÓJ, Ospina DA, Montoya S. Compost supplementation with nutrients and microorganisms in composting process. Waste Management. 2017;69:136-53. doi: https://doi.org/10.1016/j.wasman.2017.08.012. DOI: https://doi.org/10.1016/j.wasman.2017.08.012
Dura-Baron R, Ropain K, Picon F, Taborda J. Producción de compost a partir de residuos de poda para reducir el impacto ambiental en la ciudad de Valledupar (Colombia). Valledupar Universidad Popular del Cesar 2017. p. 1-8.
Albarracín SDM, Roa PAL, Ortega SF, Montañez AG. Producción de abono orgánico mediante el compostaje aerotérmico de residuos de poda. Revista Bistua Facultad de Ciencias Básicas 2018 16(1):156-62. DOI: https://doi.org/10.24054/01204211.v1.n1.2018.3203
Cardona CS, Hernández RLJ. Aprovechamiento de residuos de podas mediante compostaje en la escuela militar de aviación “Marco Fidel Suárez”. Departamento de Ciencias Ambientales. Cali: Universidad Autónoma de Occidente; 2008.
Pizarro-Loaiza CA, Torres-Lozada P, Illa J, Palatsi J, Bonmatí A. Effect of harvesting age and size reduction in the performance of anaerobic digestion of pennisetum grass. Processes. 2020 doi: 10.3390/pr8111414. DOI: https://doi.org/10.3390/pr8111414
Cadavid-Rodríguez LS, Bolaños-Valencia IV. Grass from public green spaces an alternative source of renewable energy in tropical countries. Revista ION. 2016;29(1):109-16. DOI: https://doi.org/10.18273/revion.v29n1-2016009
Zhang L, Sun X. Food waste and montmorillonite contribute to the enhancement of green waste composting. Process Safety and Environmental Protection. 2023;170:983-98. doi: https://doi.org/10.1016/j.psep.2022.12.080. DOI: https://doi.org/10.1016/j.psep.2022.12.080
Zhang L, Sun X. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Management. 2016;48:115-26. doi: https://doi.org/10.1016/j.wasman.2015.11.032. DOI: https://doi.org/10.1016/j.wasman.2015.11.032
Awasthi MK, Duan Y, Liu T, Awasthi SK, Zhang Z. Relevance of biochar to influence the bacterial succession during pig manure composting. Bioresource Technology. 2020;304:122962. doi: https://doi.org/10.1016/j.biortech.2020.122962. DOI: https://doi.org/10.1016/j.biortech.2020.122962
Chen H, Awasthi MK, Liu T, Zhao J, Ren X, Wang M, et al. Influence of clay as additive on greenhouse gases emission and maturity evaluation during chicken manure composting. Bioresource Technology. 2018;266:82-8. doi: https://doi.org/10.1016/j.biortech.2018.06.073. DOI: https://doi.org/10.1016/j.biortech.2018.06.073
Awasthi SK, Liu T, Awasthi MK, Zhang Z. Evaluation of biochar amendment on heavy metal resistant bacteria abundance in biosolids compost. Bioresource Technology. 2020;306:123114. doi: https://doi.org/10.1016/j.biortech.2020.123114. DOI: https://doi.org/10.1016/j.biortech.2020.123114
Cui L, Yan J, Yang Y, Li L, Quan G, Ding C, et al. Influence of biochar on microbial activities of heavy metals contaminated paddy fields. BioResources. 2013;8(4):5536-48. doi: 10.15376/biores.8.4.5536-5548. DOI: https://doi.org/10.15376/biores.8.4.5536-5548
Haddad SA, Mowrer J, Thapa B. Biochar and compost from cotton residues inconsistently affect water use efficiency, nodulation, and growth of legumes under arid conditions. Journal of Environmental Management. 2022;307. doi: 10.1016/j.jenvman.2022.114558. DOI: https://doi.org/10.1016/j.jenvman.2022.114558
Manyoma CP. Utilización de residuos orgánicos lignocelulósicos provenientes de actividades industriales para la producción de hongos comestibles Pleurotus spp. en el distrito especial de Buenaventura, Colombia. Departamento de Ciencias Ambientales. Cali: Universidad Autónoma de Occidente; 2013.
Rodríguez-Castro B, torres-Moreno F: Evaluación de Penicillium sp como degradador de celulosa en el proceso de compostaje de residuos orgánicos de origen vegetal en la localidad 20 de Bogotá. (2018). Accessed Julio 2023.
Obando GA, Vásquez GA, Benavides PDE, Jojoa MHF. Producción de hongo orellana (Pleurotus ostreatus) sobre residuos agrícolas y pastos generados en la comunidad de Obonuco, Nariño. Revista Colombiana de Investigaciones Agroindustriales. 2022;9(2):42-54. DOI: https://doi.org/10.23850/24220582.4865
Piñeros-Castro Y. Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigación en Colombia. Bogotá: Fundación Universidad de Bogotá Jorge Tadeo Lozano; 2014. DOI: https://doi.org/10.2307/j.ctv2rcnqc5
Torres-Lozada LK, Escobar-Medina D, Soto-Paz J, Daza-Torres MC, Torres-Lozada P. Evaluación de la mineralización del nitrógeno en un suelo ácido bajo fertilización inorgánica y orgánica. Ingeniería. 2021;26(2):197-212. DOI: https://doi.org/10.14483/23448393.16954
Zhang L, Sun X, Tian Y, Gong X. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresource Technology. 2013;131:68-75. doi: 10.1016/j.biortech.2012.10.059. DOI: https://doi.org/10.1016/j.biortech.2012.10.059
SSPD. Informe nacional de disposición final de residuos sólidos. In: Domiciliarios SdSP, editor. Bogotá: SSPD; 2021. p. 94.
Li Y, Xue Z, Li S, Sun X, Hao D. Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning. Bioresource Technology. 2023;385:129444. doi: https://doi.org/10.1016/j.biortech.2023.129444. DOI: https://doi.org/10.1016/j.biortech.2023.129444
- Brayan A. Parra-Orobio, Andrés Donoso-Bravo, Patricia Torres-Lozada, Anaerobic digestion of food waste. Predicting of methane production by comparing kinetic models , Ingeniería y Competitividad: Vol. 19 No. 1 (2017): Revista Ingeniería y Competitividad
Accepted 2024-01-29
Published 2024-02-26
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).