Main Article Content

Authors

Quinoa is an ancestral Andean grain of great importance due to its nutritional potential, cultivated in the Andean region for many years. Lactic acid fermentation may be a cost-effective processing alternative to improve quinoa-derived or gluten-free products, as it has been used in different cereals to enhance physicochemical and sensory characteristics. This review presents the nutritional importance of quinoa, the key indicators that can affect homofermentation, the analysis of different studies that have worked with this pseudocereal as a substrate for the development of various fermented products such as sourdoughs from quinoa flour for bread and other baked goods, beverages, pasta, baked products in combination with other pseudocereals and buckwheat, and soy-based beverages. The results reveal that quinoa is a nutrient-rich substrate for lactic acid bacteria, and fermentation generates nutritional changes by increasing certain macronutrients and/or bioactive compounds through bacterial metabolism and starch hydrolysis. Additionally, it improves functional, technological, and sensory properties due to starch modification and metabolite production. This presents a promising alternative in quinoa processing and the development of functional foods.

Ruth M. Benavides-Guevara, Universidad Nacional Abierta y a Distancia, Bogotá, Colombia

https://orcid.org/0000-0001-8084-8332

Ibeth Rodríguez-González, Universidad Nacional Abierta y a Distancia, Bogotá, Colombia

https://orcid.org/0000-0003-3312-3376

María L Inampués-Charfuelan, Centro Atención Sector Agropecuario, SENA - Regional Risaralda, Colombia

https://orcid.org/0000-0001-5665-6592

1.
Benavides-Guevara RM, Rodríguez-González I, Inampués-Charfuelan ML. Functional, nutritional, and technological potential of quinoa through lactic acid fermentation: a review. inycomp [Internet]. 2023 Jun. 26 [cited 2024 Nov. 22];25(3):e- 30312693. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12693

Jancurová, M., Minarovičová, L., & Dandar, A. Quinoa–a rewiev. Czech Journal of Food Sciences [Internet]. 2009;27(2):71-9. Disponible en: https://doi.org/10.17221/32/2008-CJFS DOI: https://doi.org/10.17221/32/2008-CJFS

Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. Quinoa protein: Composition, structure and functional properties. Food chemistry [Internet]. 2019;299(125161). Disponible en: https://doi.org/10.1016/j.foodchem.2019.125161 DOI: https://doi.org/10.1016/j.foodchem.2019.125161

Petrova P, Petrov K. Lactic Acid Fermentation of Cereals and Pseudocereals: Ancient Nutritional Biotechnologies with Modern Applications. Nutrients [Internet]. 2020 abr [citado 12 de jun de 2023];12(4):1118. Disponible en: https://doi.org/10.3390/nu12041118 DOI: https://doi.org/10.3390/nu12041118

Vilcacundo R, Hernández-Ledesma B. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science [Internet]. 2017 abr [citado 13 de jun de 2023];14:1-6. Disponible en: https://doi.org/10.1016/j.cofs.2016.11.007 DOI: https://doi.org/10.1016/j.cofs.2016.11.007

Scanlin L, Lewis KA. Quinoa as a Sustainable Protein Source. En: Sustainable Protein Sources [Internet]. Elsevier; 2017 [citado 12 de jun de 2023]. p. 223-38. Disponible en: http://dx.doi.org/10.1016/B978-0-12-802778-3.00014-7 DOI: https://doi.org/10.1016/B978-0-12-802778-3.00014-7

Föste M, Nordlohne SD, Elgeti D, Linden MH, Heinz V, Jekle M, et al. Impact of quinoa bran on gluten-free dough and bread characteristics. Eur Food Res Technol [Internet]. 2014 nov [citado 12 de jun de 2023];239(5):767-75. Disponible en: https://doi.org/10.1007/s00217-014-2269-x DOI: https://doi.org/10.1007/s00217-014-2269-x

Rollán GC, Gerez CL, LeBlanc JG. Lactic Fermentation as a Strategy to Improve the Nutritional and Functional Values of Pseudocereals. Front Nutr [Internet]. 2019 jul [citado 12 de jun de 2023];6:98. Disponible en: https://doi.org/10.3389/fnut.2019.00098 DOI: https://doi.org/10.3389/fnut.2019.00098

Graf BL, Rojas-Silva P, Rojo LE, Delatorre-Herrera J, Baldeón M, Raskin I. Innovations in Health Value and Functional Food Development of Quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science [Internet]. 2015;14:431-45. Disponible en: https://doi.org/10.1111/1541-4337.12135 DOI: https://doi.org/10.1111/1541-4337.12135

Rizzello CG, Lorusso A, Montemurro M, Gobbetti M. Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread. Food Microbiology [Internet]. 2016 [citado 12 de jun de 2023];56:1-13. Disponible en: https://doi.org/10.1016/j.fm.2015.11.018 DOI: https://doi.org/10.1016/j.fm.2015.11.018

Ludena Urquizo FE, García Torres SM, Tolonen T, Jaakkola M, Pena-Niebuhr MG, von Wright A, et al. Development of a fermented quinoa-based beverage. Food science & nutrition [Internet]. 2016;5(3):602-8. Disponible en: https://doi.org/10.1002/fsn3.436 DOI: https://doi.org/10.1002/fsn3.436

Canaviri Paz P, Janny RJ, Håkansson Å. Safeguarding of quinoa beverage production by fermentation with Lactobacillus plantarum DSM 9843. International Journal of Food Microbiology [Internet]. jul de 2020 [citado 13 de junio de 2023];324:108630. Disponible en: https://doi.org/10.1016/j.ijfoodmicro.2020.108630 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108630

Lorusso A, Coda R, Montemurro M, Giuseppe Rizzello C. Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Alimentos [Internet]. 2018;7(4):1-20. Disponible en: https://doi.org/10.3390/foods7040051 DOI: https://doi.org/10.3390/foods7040051

Rizzello CG, Lorusso A, Russo V, Pinto D, Marzani B, Gobbetti M. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria. International Journal of Food Microbiology [Internet]. 2017;241:252-61. Disponible en: http://dx.doi.org/10.1016/j.ijfoodmicro.2016.10.035 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.10.035

Petrova P, Arsov A, Petrov K. Chapter 1 - Cereal fermentation by LAB: From ancient to modern alimentation biotechnologies. En: Lactic Acid Bacteria in Food Biotechnology [Internet]. Elsevier; 2022. p. 3-26. Disponible en: https://doi.org/10.1016/B978-0-323-89875-1.00017-1 DOI: https://doi.org/10.1016/B978-0-323-89875-1.00017-1

Carrizo SL. Aplicación de Bacterias Lácticas En El Desarrollo de Alimentos Novedosos a Base de Granos Andinos. [Internet] [Tesis Doctorado en Ciencias Biológicas]. [Argentina]: Universidad Nacional de Tucuman.; 2018. Disponible en: https://ri.conicet.gov.ar/bitstream/handle/11336/84670/CONICET_Digital_Nro.d8171ef0-e6ad-44df-bde4-9dafa5e35850_A.pdf?sequence=2&isAllowed=y

Cerdá-Bernad D, Valero-Cases E, Pastor JJ, Frutos MJ, Pérez-Llamas F. Probiotic red quinoa drinks for celiacs and lactose intolerant people: study of functional, physicochemical and probiotic properties during fermentation and gastrointestinal digestion. International Journal of Food Sciences and Nutrition [Internet]. 2021 [citado 12 de jun de 2023];73(1):49-59. Disponible en: https://doi.org/10.1080/09637486.2021.1921707 DOI: https://doi.org/10.1080/09637486.2021.1921707

Peiretti PG, Gai F, Tassone S. Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Animal Feed Science and Technology [Internet]. jun de 2013 [citado 12 de jun de 2023];183(1-2):56-61. Disponible en: https://doi.org/10.1016/j.anifeedsci.2013.04.012 DOI: https://doi.org/10.1016/j.anifeedsci.2013.04.012

Thakur P, Kumar K, Dhaliwal HS. Nutritional facts, bio-active components and processing aspects of pseudocereals: A comprehensive review. 2021 [Internet]. 42(101170):1-13. Disponible en: https://doi.org/10.1016/j.fbio.2021.101170 DOI: https://doi.org/10.1016/j.fbio.2021.101170

Wang S, Zhu F. Formulation and Quality Attributes of Quinoa Food Products. Food Bioprocess Technol [Internet]. 2016 ene [citado 13 de jun de 2023];9(1):49-68. Disponible en: https://doi.org/10.1007/s11947-015-1584-y DOI: https://doi.org/10.1007/s11947-015-1584-y

Campos-Rodriguez Y, Acosta-Coral K, Paucar-Menacho LM. Quinoa (Chenopodium quinoa): Nutritional composition and bioactive compounds of grain and leaf, and impact of heat treatment and germination. Scientia Agropecuaria [Internet]. 2022;13(3):209-20. Disponible en: https://doi.org/10.17268/sci.agropecu.2022.019 DOI: https://doi.org/10.17268/sci.agropecu.2022.019

López DN, Galante M, Robson M, Boeris V, Spelzini D. Amaranth, quinoa and chia protein isolates: Physicochemical and structural properties. International Journal of Biological Macromolecules [Internet]. 2018 abr [citado 13 de jun de 2023];109:152-9. Disponible en: https://doi.org/10.1016/j.ijbiomac.2017.12.080 DOI: https://doi.org/10.1016/j.ijbiomac.2017.12.080

FAO. La quinua: cultivo milenario para contribuir a la seguridad alimentaria mundial. Organización de las Naciones Unidas para la agricultura y alimentación. Oficina Regional para América Latina y el Caribe: Bolivia. 2011; Disponible en: https://www.fao.org/3/aq287s/aq287s.pdf

Mu H, Xue S, Sun Q, Shi J, Zhang D, et al. Research Progress of Quinoa Seeds (Chenopodium quinoa Wild.): Nutritional Components, Technological Treatment, and Application. Food [Internet]. 2023;12(2087). Disponible en: https://doi.org/10.3390/foods12102087 DOI: https://doi.org/10.3390/foods12102087

Repo-Carrasco R, Espinoza C, Jacobsen SE. Nutritional Value and Use of the Andean Crops Quinoa ( Chenopodium quinoa ) and Kañiwa ( Chenopodium pallidicaule ). Food Reviews International [Internet]. 2003 ene [citado 12 de jun de 2023];19(1-2):179-89. Disponible en: https://doi.org/10.1081/FRI-120018884 DOI: https://doi.org/10.1081/FRI-120018884

Li G, Zhu F. Quinoa starch: Structure, properties, and applications. Carbohydrate Polymers [Internet]. 2018 [citado 13 de jun de 2023];181:851-61. Disponible en: https://doi.org/10.1016/j.carbpol.2017.11.067 DOI: https://doi.org/10.1016/j.carbpol.2017.11.067

Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek [Internet]. 1983;49:209-24. Disponible en: https://doi.org/10.1007/BF00399499 DOI: https://doi.org/10.1007/BF00399499

Taylor JRN. Fermentation: Foods and Nonalcoholic Beverages [Internet]. Encyclopedia of Food Grains (Second Edition). Vol. 3. 2016. 183-192 p. Disponible en: https://doi-org.bibliotecavirtual.unad.edu.co/10.1016/B978-0-12-394437-5.00136-4 DOI: https://doi.org/10.1016/B978-0-12-394437-5.00136-4

Juneja, V. K., Dwivedi, H. P., & Sofos, J. N. Microbial control and food preservation: Theory and practice. [Internet]. Springer. 2018. Disponible en: https://doi.org/10.1007/978-1-4939-7556-3 DOI: https://doi.org/10.1007/978-1-4939-7556-3

Rawoof SAA, Kumar PS, Vo DVN, Devaraj K, Mani Y, Devaraj T, et al. Production of optically pure lactic acid by microbial fermentation: a review. Environmental Chemistry Letters [Internet]. 2021;19:539-56. Disponible en: https://doi.org/10.1007/s10311-020-01083-w DOI: https://doi.org/10.1007/s10311-020-01083-w

Vieira ADS, Bedani R, Albuquerque MACD, Biscola V, Saad SMI. The impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter microorganisms. Food Research International [Internet]. 2017;97:356-63. Disponible en: https://doi.org/10.1016/j.foodres.2017.04.026 DOI: https://doi.org/10.1016/j.foodres.2017.04.026

Bujna E, Farkas NA, Tran AM, Dam MS, Nguyen QD. Lactic acid fermentation of apricot juice by mono- and mixed cultures of probiotic Lactobacillus and Bifidobacterium strains. Food Sci Biotechnol [Internet]. 2018 [citado 12 de jun de 2023]; Disponible en: https://doi.org/10.1007/s10068-017-0269-x DOI: https://doi.org/10.1007/s10068-017-0269-x

Mousavi, ZE, Mousavi SM, Razavi SH, Emam-Djome Z, Kiani H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology [Internet]. 2011;27:23-128. Disponible en: https://doi.org/10.1007/s11274-010-0436-1 DOI: https://doi.org/10.1007/s11274-010-0436-1

Rivera-Espinoza Y, Gallardo-Navarro Y. Non-dairy probiotic products. Food microbiology [Internet]. 2010;27(1):1-11. Disponible en: https://doi.org/10.1016/j.fm.2008.06.008 DOI: https://doi.org/10.1016/j.fm.2008.06.008

Parra Huertas RA. Bactérias ácido lácticas: papel funcional nos alimentos. RevBioAgro [Internet]. 2010;8(1):93-105. Disponible en: http://www.scielo.org.co/scieloOrg/php/articleXML.php?pid=S1692-35612010000100012&lang=en

Wood BJB. Fermentation: Origins and Applications. En: Encyclopedia of Food Grains [Internet]. Elsevier; 2016 [citado 12 de jun de 2023]. p. 176-82. Disponible en: http://dx.doi.org/10.1016/B978-0-12-394437-5.00135-2 DOI: https://doi.org/10.1016/B978-0-12-394437-5.00135-2

Salovaara H, Simonson L. Fermented cereal-based functional foods. In Handbook of food and beverage fermentation technology. En: Handbook of Food and Beverage Fermentation Technology [Internet]. First Published. CRC Press; 2004. p. 852-60. Disponible en: https://doi.org/10.1201/9780203913550 DOI: https://doi.org/10.1201/9780203913550.ch40

Arenas-Suescún C, Zapata-Fernandez R, Gutiérrez-Cortés C. Evaluación de la fermentación láctica de leche con adición de quinua (Chenopodium quinoa). Vitae [Internet]. 2012;19(Supl. 1). Disponible en: http://www.redalyc.org/articulo.oa?id=169823914084

Ceballos-González C, Bolívar-Monsalve J, Ramírez-Toro C, Bolívar GA. Effect of lactic acid fermentation on quinoa dough to prepare gluten free breads with high nutritional and sensory quality. Journal of Food Processing and Preservation [Internet]. 2018;42(3):e13551. Disponible en: https://doi.org/10.1111/jfpp.13551 DOI: https://doi.org/10.1111/jfpp.13551

Faraji A, Naghipour F. Improve the quality of gluten-free cakes using brown and white rice flour and Isfarzeh, Qodoume Shirazi and Farsi gums. Journal of food science and technology (Iran) [Internet]. 2022;19(128):69-82. Disponible en: http://fsct.modares.ac.ir/article-7-60209-en.html

Giuberti G, Gallo A. Reducing the glycaemic index and increasing the slowly digestible starch content in gluten free cereal based foods: a review. Int J Food Sci Technol [Internet]. 2018 ene [citado 12 de jun de 2023];53(1):50-60. Disponible en: https://doi.org/10.1111/ijfs.13552 DOI: https://doi.org/10.1111/ijfs.13552

Valerio F, Bavaro A, Di Biase M, Lonigro SL, Logrieco AF, Lavermicocca P. Effect of Amaranth and Quinoa Flours on Exopolysaccharide Production and Protein Profile of Liquid Sourdough Fermented by Weissella cibaria and Lactobacillus plantarum. Frontiers in Microbiology [Internet]. 2020;11(967). Disponible en: https://doi.org/10.3389/fmicb.2020.00967 DOI: https://doi.org/10.3389/fmicb.2020.00967

Sha Y, Jiewen X, Xiaowen W. Effects of Different Microbial Fermentation on the Protein Properties and Lipid Composition of Quinoa. Scientia Agricultura Sinica [Internet]. 2020;53(10):2045-54. Disponible en: https://doi.org/10.3864/j.issn.0578-1752.2020.10.011

Carbó R, Gordún, Fernández A, Ginovart M. Elaboration of a spontaneous gluten-free sourdough with a mixture of amaranth, buckwheat, and quinoa flours analyzing microbial load, acidity, and pH. Food science and technology international [Internet]. 2019;26(4):344-52. Disponible en: https://doi.org/10.1177/1082013219895357 DOI: https://doi.org/10.1177/1082013219895357

Rocchetti G, Miragoli F, Zacconi C, Lucini L, Rebecchi A. Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds. Food Research International [Internet]. 2019;119:886-94. Disponible en: https://doi.org/10.1016/j.foodres.2018.10.073 DOI: https://doi.org/10.1016/j.foodres.2018.10.073

Jagelaviciute, J., & Cizeikiene, D. The influence of non-traditional sourdough made with quinoa, hemp and chia flour on the characteristics of gluten-free maize/rice bread. Lwt [Internet]. 2021;137(110457). Disponible en: https://doi.org/10.1016/j.lwt.2020.110457 DOI: https://doi.org/10.1016/j.lwt.2020.110457

Chi MS, Pucean A, Man SM, Vodnar DC, Teleky BE, Pop CR, et al. Quinoa Sourdough Fermented with Lactobacillus plantarum ATCC 8014 Designed for Gluten-Free Muffins—A Powerful Tool to Enhance Bioactive Compounds. Applied Sciences [Internet]. 2020;10(20):7140. Disponible en: https://doi.org/10.3390/app10207140 DOI: https://doi.org/10.3390/app10207140

Carrizo SL, de LeBlanc ADM, LeBlanc JG, Rollán GC. Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Research International [Internet]. 2020;127(108735). Disponible en: https://doi.org/10.1016/j.foodres.2019.108735 DOI: https://doi.org/10.1016/j.foodres.2019.108735

Bolívar-Monsalve J, Ceballos-González C, Ramírez-Toro C, Bolívar GA. Reduction in saponin content and production of gluten free cream soup base using quinoa fermented with Lactobacillus plantarum. J Food Process Preserv [Internet]. 2018 feb [citado 12 de jun de 2023];42(2):e13495. Disponible en: https://doi.org/10.1111/jfpp.13495 DOI: https://doi.org/10.1111/jfpp.13495

KaroviNová J, Kohajdová Z, MinaroviNová L, Lauková M, Greifová M, Greif G, et al. Utilisation of quinoa for development of fermented beverages. Slovak Journal of Food Sciences [Internet]. 2020;14. Disponible en: https://doi.org/10.5219/1323 DOI: https://doi.org/10.5219/1323

Bianchi F, Rossi E, Gomes R, Sivieri K. Potentially synbiotic fermented beverage with aqueous extracts of quinoa ( Chenopodium quinoa Willd) and soy. Food Science and Technology International [Internet]. sep de 2015 [citado 12 de jun de 2023];21(6):403-15. Disponible en: https://doi.org/10.1177/1082013214540672 DOI: https://doi.org/10.1177/1082013214540672

Ayub M, Castro-Alba V, Lazarte CE. Development of an instant-mix probiotic beverage based on fermented quinoa with reduced phytate content. Journal of Functional Foods [Internet]. 2021 dic [citado 12 de jun de 2023];87:104831. Disponible en: https://doi.org/10.1016/j.jff.2021.104831 DOI: https://doi.org/10.1016/j.jff.2021.104831

Roger T, Ngouné Léopold T, Carl Moses Funtong M. Nutritional Properties and Antinutritional Factors of Corn Paste ( Kutukutu ) Fermented by Different Strains of Lactic Acid Bacteria. International Journal of Food Science [Internet]. 2015 [citado 12 de jun de 2023];2015:1-13. Disponible en: https://doi.org/10.1155/2015/502910 DOI: https://doi.org/10.1155/2015/502910

Melini F, Melini V. Impact of Fermentation on Phenolic Compounds and Antioxidant Capacity of Quinoa. Fermentation [Internet]. 2021;7(1):20. Disponible en: https://doi.org/10.3390/fermentation7010020 DOI: https://doi.org/10.3390/fermentation7010020

Adebo OA, Gabriela Medina-Meza I. Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules [Internet]. 2020 febrero [citado 12 de jun de 2023];25(4):927. Disponible en: https://doi.org/10.3390/molecules25040927 DOI: https://doi.org/10.3390/molecules25040927

Madhu AN, Giribhattanavar P, Narayan MS, Prapulla SG. Probiotic lactic acid bacterium from kanjika as a potential source of vitamin B12: evidence from LC-MS, immunological and microbiological techniques. Biotechnol Lett [Internet]. 2010 abr [citado 12 de jun de 2023];32(4):503-6. Disponible en: https://doi.org/10.1007/s10529-009-0176-1 DOI: https://doi.org/10.1007/s10529-009-0176-1

Chaves-López C, Rossi C, Maggio F, Paparella A, Serio A. Changes Occurring in Spontaneous Maize Fermentation: An Overview. Fermentation [Internet]. 2020;6(1):36. Disponible en: https://doi.org/10.3390/fermentation6010036 DOI: https://doi.org/10.3390/fermentation6010036

Received 2022-12-18
Accepted 2023-08-11
Published 2023-06-26