Main Article Content

Authors

Doing studies of biological tissues as the one of cervix with alternative techniques allows to direct to a medical diagnosis support of cervix cancer, the fourth more common in the world and the first cause of death in women between 30 and 59 years old in Colombia. In the cervix tissue there are found different fluorophores such as: NADH, flavine, elastin and collagen; molecules that generates fluorescence thanks to the capacity of absorb electromagnetic energy, this allows the emission of photons of less energy at a certain wavelength. In the initial steps of the dysplasia, the cells change their metabolic velocities, physical and structural characteristics; with that the spectral response of the molecules present in the cervical tissue is altered. In the research, an analysis of the fluorescence spectrum was made by using LED ultraviolet light in the range between 335 and 340 nm as source of electromagnetic radiation and was verified when interacting with the biological tissue of the cervix biopsies given by the Caldas Pathology Institute of the city of Manizales-Colombia, spectrum with active responses is generated in the wavelength ranges of the fluorophores, showing the interaction and excitation between them. Those spectra are similar to the ones obtained with the traditional optical fluorescence spectroscopy applied with a laser light source. The previous fact lets conclude that using LED technology of lower cost than the lasers used usually is viable to continue with the processing of the spectrum of the cervix tissue and generate a classification according to its pathology.

Nidia Alejandra Cifuentes Rodriguez, Universidad Nacional de Colombia, Manizales, Colombia

https://orcid.org/0009-0006-8690-4757 

Edinson Rubian Benavides Cuestas, Universidad Nacional de Colombia. Manizales, Colombia

https://orcid.org/0009-0004-0536-2729 

Sofia Geovana Chacon Chamorro, Universidad Nacional de Colombia. Manizales, Colombia

https://orcid.org/0000-0002-5687-6883  

Belarmino Segura Giraldo, Universidad Nacional de Colombia. Manizales, Colombia

https://orcid.org/0000-0001-9205-8573

1.
Cifuentes Rodriguez NA, Benavides Cuestas ER, Chacon Chamorro SG, Segura Giraldo B. Optical fluorescence spectroscopy using LED-type light in ex-vivo cervical tissues. inycomp [Internet]. 2023 May 5 [cited 2024 Dec. 22];25(2):e-20912532. Available from: https://revistaingenieria.univalle.edu.co/index.php/ingenieria_y_competitividad/article/view/12532

Ministerio de salud y protección social colombiano. Cáncer de cuello uterino [Internet]. Ministerio de salud y protección social. [citado el 14 de octubre de 2022]. Disponible en: https://www.minsalud.gov.co/salud/publica/ssr/Paginas/Cancer-de-cuello-uterino.aspx

Instituto nacional de salud (CO). 2018 jun [citado el 14 de octubre de 2022]. Disponible en:https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2018%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2023.pdf

Ebenezar J, Aruna P, Ganesan S. Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro. Photochem Photobiol [Internet]. 2010;86(1):77–86. Disponible en: http://dx.doi.org/10.1111/j.1751-1097.2009.00628.x

Ramanujam N. Fluorescence Spectroscopy In Vivo. En: Encyclopedia of Analytical Chemistry [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2006. Disponible en: http://dx.doi.org/10.1002/9780470027318.a0102

Pradhan A, Pandey PK, Singh P. Overview of fluorescence spectroscopy and imaging for early cancer detection. En: Alfano RR, Shi L, editores. Neurophotonics and Biomedical Spectroscopy. Elsevier; 2019. p. 253–328

Giraldo BS. ESPECTROSCOPÍA ÓPTICA DE FLUORESCENCIA APLICADA AL SOPORTE DE DIAGNÓSTICO MÉDICO DE PRECÁNCERES DE TEJIDOS DE CUELLO UTERINO. [SEDE MANIZALES]: UNIVERSIDAD NACIONAL DE COLOMBIA; 2009.

Tiburcio Moreno J, Hernández F. ESTUDIO DEL PROCESO DE FOTODEGRADACION DE β-CAROTENO EN UNA SOLUCION DE TETRAHIDROFURANO (THF) USANDO ESPECTROSCOPIA DE ABSORCION OPTICA Y FLUORESCENCIA. CYD [Internet]. 30 de abril de 2019 [citado 14 de octubre de 2022];(20):12-5. Disponible en: https://revistas.unjbg.edu.pe/index.php/cyd/article/view/502

Lakowicz JR. Instrumentation for Fluorescence Spectroscopy. En: Principles of Fluorescence Spectroscopy. Boston, MA: Springer US; 2006. p. 27–61.

Sikorska E, Khmelinskii I, Sikorski M. Fluorescence spectroscopy and imaging instruments for food quality evaluation. En: Zhong J, Wang X, editores. Evaluation Technologies for Food Quality. Elsevier; 2019. p. 491–533.

Etcheverry ME, Pasquale MÁ, Garavaglia MJ. Caracterización del acoplamiento de una fuente de luz LED a una fibra óptica con aplicación en la terapia fotodinámica (TFD) del cáncer cérvix. En: III Jornadas de Investigación, Transferencia y Extensión de la Facultad de Ingeniería [Internet]. 2015 [citado el 14 de octubre de 2022]. Disponible en: http://sedici.unlp.edu.ar/handle/10915/47957

Álvarez AC, Corrés Sanz JM. Diseño y fabricación de fuente de luz blanca LED acoplada a fibra [Internet]. [PAMPLONA]: UNIVERSIDAD PUBLICA DE NAVARRA; 2001 [citado el 15 de octubre de 2022]. Disponible en: https://academica-e.unavarra.es/xmlui/bitstream/handle/2454/19114/TFG_Cilveti_Alvarez_Ander.pdf?sequence=1&isAllowed=y

Organización mundial de la salud. Cáncer cervicouterino [Internet]. Organización mundial de la salud. 2022 [citado el 14 de octubre de 2022]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer

Pradhan A, Pandey PK, Singh P. Overview of fluorescence spectroscopy and imaging for early cancer detection. En: Neurophotonics and Biomedical Spectroscopy. Elsevier; 2019. p. 253–328 Disponible en: https://www.elsevier.com/books/neurophotonics-and-biomedical-spectroscopy/alfano/978-0-323-48067-3.

Ebenezar J, Aruna P, Ganesan S. Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro. Photochem Photobiol [Internet]. 2010;86(1):77–86. Disponible en: http://dx.doi.org/10.1111/j.1751-1097.2009.00628.x

Alfano RR, Yang Y. Stokes shift emission spectroscopy of human tissue and key biomolecules. IEEE J Sel Top Quantum Electron [Internet]. 2003;9(2):148–53. Disponible en: http://dx.doi.org/10.1109/JSTQE.2003.811285