Effect of operating parameters and modes in the filtration of acid whey using ultra- and microfiltration ceramic membranes.
Main Article Content
Whey is a liquid by-product obtained by cheese elaboration, which is not completely used due to the large quantities produced. As a result, the whey is poured into rivers and soils and becomes a pollutant agent. The valorization of acid whey using membrane clarification was evaluated, where the effect of temperature and membrane cut-off were studied using acid whey. Permeability was three times higher at 70°C than 50°C (163.2±11.1 y 62.4±9.2 L/m2.h, respectively) for membranes with a cut-off of 0.2 µm. Furthermore, the permeate flux for this cut-off was three, six and ten times higher compared with the cut-off of 300, 150 y 50 kDa at 70°C, respectively. The clarification stage was scaled-up with 0.2 µm membranes, achieving about 22 L of whey filtered for Batch mode until a volume reduction factor (VRF) of 5 with protein retention of 68%. In Fed-Batch mode, the retention of protein was 61%, but the filtration could be carried out for longer, reducing fouling and filtering almost the double of the quantity of whey compared with Batch mode. In all cases, the turbidity of permeates was lower than 12 NTU (reduction >99%), regardless of whey turbidity whose values might be superior to 12,000 NTU.
(1) Correia M, Cardarelli H. Mozzarella Cheese Stretching: A Minireview. Food Technology & Biotechnology. 2021 mar; 59(1): 82 – 91. Disponible en: doi: 10.17113/ftb.59.01.21.6707.
(2) United States Department of Agriculture. (USDA), Dairy: World Markets and Trade, Dairy Production and Trade Developments; 2021 dic. Disponible en: https://apps.fas.usda.gov/psdonline/circulars/dairy.pdf
(3) Asunis F, Gioannis G, Dessi P, Isipato M, Lens P, Muntoni A, Polettini A, Rossi R, Spiga D. The dairy biorefinery: Integrating treatment processes for cheese whey valorisation. Journal of Environmmental Management. 2020 dic; 276:111240. Disponible en: https://doi.org/10.1016/j.jenvman.2020.111240.
(4) Bosco F, Carletto R, Marmo L. An integrated cheese whey valorization process. Chem. Eng. Trans. 2018; 64:379 – 384. Disponible en: https://doi.org/10.3303/CET1864064.
(5) Drabowski W, Zylka R, Malinowski P. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant. Environ. Res. 2017 feb; 15:135–139. Disponible en: https://doi.org/10.1016/j.envres.2016.12.001.
(6) Ahmad T, Aadil R, Ahmed H, Rahman U, Soares B, Souza S, Pimentel T, Scudino H, Guimaraes J, Esmerino E, Freitas M, Almada R, Vendramel S, Silva M, Cruz A. Treatment and utilization of dairy industrial waste: a review. Trends Food Sci. 2019 jun; 88:361 – 372. Disponible en: https://doi.org/10.1016/j.tifs.2019.04.003.
(7) Parra R. Lactosuero: importancia en la industria de alimentos. Rev. Fac. Nac. Agron. Medellín. 2009 abr; 62:4967–4982.
(8) Simanca J, Arteaga M, Pérez M, Soto Y, Salcedo M. Characterization and study of spontaneous fermentation of fermented milk product (suero costeño) produced in Monteria. Rev. Mvz Cordoba. 2010 ene; 15(1):1944–1953.
(9) Baldasso C, Barros T, Tessaro I. Concentration and purification of whey proteins by ultrafiltration. Desalination. 2011 sep; 278(1-3):381–386. Disponible en: doi:10.1016/j.desal.2011.05.055.
(10) Schiffer S, Adekunle B, Matyssek A, Hartinger M, Kulozik U. Effect of pre-heating prior to low temperature 0.1 µm-Microfiltration of milk on casein-whey protein fractionation. Foods. 2021 may; 10(5):1090. Disponible en: https://doi.org/10.3390/foods10051090.
(11) Hinkova A, Bubnik Z, Henke S, Pour V, Zidova P, Sarka E, Hassan N, Kadlec P. Cheese whey tangential filtration using tubular mineral membranes. Chemical Papers. 2016; 70(3):325–332. Disponible en: https://doi.org/10.1515/chempap-2015-0191.
(12) Parashar A, Jin Y, Mason B, Chae M, Bressler D. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry. J. Dairy Sci. 2016 mar; 99(3):1859–1867. Disponible en: doi:10.3168/jds.2015-10059.
(13) Steinhauer T, Schwing J, Krauß S, Kulozik U. Enhancement of ultrafiltration-performance and improvement of hygienic quality during the production of whey concentrates. Int. Dairy J. 2015a ene; 45:8–14. Disponible en: doi:10.1016/j.idairyj.2015.01.010.
(14) Muro-Urista C, Díaz-Nava C, García-Gaitán B, Zavala-Arce R, Ortega-Aguilar R, Álvarez-Fernández R, Riera-Rodríguez F. Recuperación de los componentes del lactosuero residual de una industria elaboradora de queso utilizando membranas. Afinidad. 2010; 67(547):212–220. Disponible en: http://www.raco.cat/index.php/afinidad/article/view/269148.
(15) Camacho M. Obtención de un concentrado proteico del suero de leche de vaca utilizando tecnología de membranas [Tesis pregrado en internet]. Quito: Esucela Politécnica Nacional; 2009. 135 p. Disponible en: https://bibdigital.epn.edu.ec/handle/15000/1657.
(16) Souza R, Gimenes M, Costa S, Müller C. Eliminación de grasas del suero de queso para obtener proteínas y lactosa. Inf. Tecnol. 2008; 19(2):41–50. Disponible en: doi:10.4067/S0718-07642008000200006.
(17) Atra R, Vatai G, Bekassy-Molnar E, Balint A. Investigation of ultra- And nanofiltration for utilization of whey protein and lactose. J. Food Eng. 2005 abr; 67(3):325–332. Disponible en: doi:10.1016/j.jfoodeng.2004.04.035.
(18) Díaz-Arenas G, Ramos-González D, Muvdi-Nova C. Estudio del proceso de producción en continuo de hidrolizados de almidón de yuca integrando hidrólisis enzimática y clarificación con membranas. Vitae. 2017 dic; 24(2):25–34. Disponible en: https://aprendeenlinea.udea.edu.co/revistas/index.php/vitae/article/view/26521/20787057.
(19) Barukčić I, Božanić R, Kulozik U. Influence of process temperature and microfiltration pre-treatment on flux and fouling intensity during cross-flow ultrafiltration of sweet whey using ceramic membranes. Int. Dairy J. 2015 dic; 51: 1–7. Disponible en: doi:10.1016/j.idairyj.2015.07.002.
(20) Lakstina J, Aboltina I, Vanaga L, Ciprovica I, Jonkus D, Zagorska J, Cinkmanis I. The Novel Solution for Acid Whey Permeate Application in Animal Feeding, Rural Sustainability Research. 2020 dic; 44(339):1-7. Disponible en: https://doi.org/10.2478/plua-2020-0011
(21) González J, Molina G. Evaluación de la concentración de leche fresca po filtración con membranas como estrategia para el mejoramiento en el esquema de producción de quesos hilados [Tesis pregrado], Universidad Industrial de Santander; 2016. 46 p. Disponible en: http://tangara.uis.edu.co/biblioweb/pags/cat/popup/pa_detalle_matbib.jsp?parametros=178201|%20|5|24.
(22) Goulas A, Grandison A. Applications of Membrane Separation, in: Adv. Dairy Sci. Technol., Blackwell Publishing Ltd, Oxford, UK; 2008: pp. 35–74. Disponible en: doi:10.1002/9780470697634.ch2.
(23) Wen-Qiong W, Yun-Chao W, Xiao-Feng Z, Rui-Xia G, Mao-Lin L. Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chemistry. 2019 Ago; 289:468 – 481. Disponible en: https://doi.org/10.1016/j.foodchem.2019.03.086
(24) D’Souza N, Mawson A. Membrane cleaning in the dairy industry: A review. Crit. Rev. Food Sci. Nutr. 2007 ene; 45(2): 125–134. Disponible en: doi:10.1080/10408690490911783.
(25) J. Acosta Camacho, S. Rios Morales. Aplicación de las técnicas con membranas de microfiltración y ultrafiltración para la clarificación y fraccionamiento de sangre de bovino e hidrolizada [Tesis pregrado], Universidad Industrial de Santander; 2013. 49 p. Disponible en: http://tangara.uis.edu.co/biblioweb/pags/cat/popup/pa_detalle_matbib.jsp?parametros=166779|%20|2|
(26) Prieto M, Carrillo A, Rodríguez M. Ensayos preliminares de microfiltración directa para potabilización de aguas superficiales en la Sabana de Bogotá. Rev. Ing. 2005 nov; 22:133–141. Disponible en: http://www.redalyc.org/articulo.oa?id=121014219015.
(27) Steinhauer T, Hanély S, Bogendörfer K, Kulozik U. Temperature-dependent membrane fouling during filtration of whey and whey proteins. J. Memb. Sci. 2015c oct; 492:364–370. Disponible en: doi:10.1016/j.memsci.2015.05.053.
(28) Barukčić I, Božanić R, Kulozik U. Effect of pore size and process temperature on flux, microbial reduction and fouling mechanisms during sweet whey cross-flow microfiltration by ceramic membranes. Int. Dairy J. 2014 nov; 39(1):8–15. Disponible en: doi:10.1016/j.idairyj.2014.05.002.
(29) Almécija M, Ibáñez R, Guadix A, Guadix E. Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. J. Memb. Sci. 2007 feb; 288(1-2):28–35. Disponible en: doi:10.1016/j.memsci.2006.10.021.
(30) Heidebrecht H, Toro-Sierra J, Kulozik U. Concentration of Immunoglobulins in microfiltration permeates of skim milk: Impact of transmembrane pressure and temperature on the IgC transmission using different ceramic membrane types and pore sizes. Foods. 2018 jun; 7(7): 101. Disponible en: https://doi.org/10.3390/foods7070101
(31) Steinhauer T, Marx M, Bogendörfer K, Kulozik U. Membrane fouling during ultra- and microfiltration of whey and whey proteins at different environmental conditions: The role of aggregated whey proteins as fouling initiators, J. Memb. Sci. 2015b sep; 489:20–27. Disponible en: doi:10.1016/j.memsci.2015.04.002.
- Sergio Alejandro Cáceres-Roa, Luis Javier López-Giraldo, Carlos Jesús Muvdi Nova, Polyphenol extraction: a comparison from wet cocoa husk vs. dried cocoa husk , Ingeniería y Competitividad: Vol. 25 No. 2 (2023): Ingeniería y Competitividad
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors grant the journal and Universidad del Valle the economic rights over accepted manuscripts, but may make any reuse they deem appropriate for professional, educational, academic or scientific reasons, in accordance with the terms of the license granted by the journal to all its articles.
Articles will be published under the Creative Commons 4.0 BY-NC-SA licence (Attribution-NonCommercial-ShareAlike).